Verwandte Artikel zu Clustering for Classification: Using Standard Clustering...

Clustering for Classification: Using Standard Clustering Methods - Softcover

 
9783639031638: Clustering for Classification: Using Standard Clustering Methods

Inhaltsangabe

Advances in technology have provided industry with an array of de­vices for collecting data. The frequency and scale of data collection means that there are now many large datasets being generated. To find patterns in these datasets it would be useful to be able to apply modern methods of classification such as support vector machines. Unfortunately these methods are computationally expensive, quadra­tic in the number of data points in fact, and so cannot be applied directly. This book proposes a framework whereby a variety of clustering methods can be used to summarise datasets, that is, reduce them to a smaller but still representative dataset so that these advanced me­thods can be applied. It compares the results of using this framework against using random selection on a large number of classification and regression problems. Results show that the clustered datasets are on average fifty percent smaller than the original datasets without loss of classification accuracy which is significantly better than ran­dom selection. They also show that there is no free lunch, for each dataset it is important to choose a clustering method carefully.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Advances in technology have provided industry with an array of de­vices for collecting data. The frequency and scale of data collection means that there are now many large datasets being generated. To find patterns in these datasets it would be useful to be able to apply modern methods of classification such as support vector machines. Unfortunately these methods are computationally expensive, quadra­tic in the number of data points in fact, and so cannot be applied directly. This book proposes a framework whereby a variety of clustering methods can be used to summarise datasets, that is, reduce them to a smaller but still representative dataset so that these advanced me­thods can be applied. It compares the results of using this framework against using random selection on a large number of classification and regression problems. Results show that the clustered datasets are on average fifty percent smaller than the original datasets without loss of classification accuracy which is significantly better than ran­dom selection. They also show that there is no free lunch, for each dataset it is important to choose a clustering method carefully.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Zustand: Gut | Seiten: 108 | Sprache...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Clustering for Classification: Using Standard Clustering...

Beispielbild für diese ISBN

Reuben Evans
Verlag: VDM Verlag, 2008
ISBN 10: 3639031636 ISBN 13: 9783639031638
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Gut. Zustand: Gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 4459887/3

Verkäufer kontaktieren

Gebraucht kaufen

EUR 49,33
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Evans, Reuben
ISBN 10: 3639031636 ISBN 13: 9783639031638
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Advances in technology have provided industry with an array of devices for collecting data. The frequency and scale of data collection means that there are now many large datasets being generated. To find patterns in these datasets it would be useful to be . Artikel-Nr. 4951030

Verkäufer kontaktieren

Neu kaufen

EUR 51,48
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Reuben Evans
ISBN 10: 3639031636 ISBN 13: 9783639031638
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Advances in technology have provided industry with an array of devices for collecting data. The frequency and scale of data collection means that there are now many large datasets being generated. To find patterns in these datasets it would be useful to be able to apply modern methods of classification such as support vector machines. Unfortunately these methods are computationally expensive, quadratic in the number of data points in fact, and so cannot be applied directly.This book proposes a framework whereby a variety of clustering methods can be used to summarise datasets, that is, reduce them to a smaller but still representative dataset so that these advanced methods can be applied. It compares the results of using this framework against using random selection on a large number of classification and regression problems.Results show that the clustered datasets are on average fifty percent smaller than the original datasets without loss of classification accuracy which is significantly better than random selection. They also show that there is no free lunch, for each dataset it is important to choose a clustering method carefully. Artikel-Nr. 9783639031638

Verkäufer kontaktieren

Neu kaufen

EUR 61,64
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb