Speech disorders, especially hypernasality, are common in children with cleft lip and palate. In order to simplify the diagnosis during the speech therapy of these patients an automatic non-invasive way to measure hypernasality is desirable. In this context, the author analyzes approaches to the detection of hypernasal speech. The focus lies on examining the fitness of several features for that purpose. These include pronunciation features computed from phoneme confusion probabilities, prosodic features, features based on the Teager Energy operator, and Mel Frequency Cepstral Coefficients. The extraction process of each of these features is described as well as the classification system in which they are tested. Finally, experimental results are presented and discussed. This work addresses researchers in the field of pattern recognition.
Alexander Reuß studies computer science at the University of Erlangen-Nuremberg.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 14,13 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 14,25 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In fair condition, suitable as a study copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,200grams, ISBN:9783639008333. Artikel-Nr. 9355883
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783639008333_new
Anzahl: Mehr als 20 verfügbar