Controlled Markov Processes and Viscosity Solutions (Applications of Mathematics)

 
9783540979272: Controlled Markov Processes and Viscosity Solutions (Applications of Mathematics)

This book is intended as an introduction to optimal stochastic control for continuous time Markov processes and to the theory of viscosity solutions. The authors approach stochastic control problems by the method of dynamic programming. The text provides an introduction to dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. Also covered are controlled Markov diffusions and viscosity solutions of Hamilton-Jacobi-Bellman equations. The authors have tried, through illustrative examples and selective material, to connect stochastic control theory with other mathematical areas (e.g. large deviations theory) and with applications to engineering, physics, management, and finance.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

From the Back Cover:

This book is intended as an introduction to optimal stochastic control for continuous time Markov processes and to the theory of viscosity solutions. Stochastic control problems are treated using the dynamic programming approach. The authors approach stochastic control problems by the method of dynamic programming. The fundamental equation of dynamic programming is a nonlinear evolution equation for the value function. For controlled Markov diffusion processes, this becomes a nonlinear partial differential equation of second order, called a Hamilton-Jacobi-Bellman (HJB) equation. Typically, the value function is not smooth enough to satisfy the HJB equation in a classical sense. Viscosity solutions provide framework in which to study HJB equations, and to prove continuous dependence of solutions on problem data. The theory is illustrated by applications from engineering, management science, and financial economics.

In this second edition, new material on applications to mathematical finance has been added. Concise introductions to risk-sensitive control theory, nonlinear H-infinity control and differential games are also included.

Review of the earlier edition:

"This book is highly recommended to anyone who wishes to learn the dinamic principle applied to optimal stochastic control for diffusion processes. Without any doubt, this is a fine book and most likely it is going to become a classic on the area... ."

SIAM Review, 1994

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben