Verwandte Artikel zu K-Theory: An Introduction (Classics in Mathematics)

K-Theory: An Introduction (Classics in Mathematics) - Softcover

 
9783540798897: K-Theory: An Introduction (Classics in Mathematics)

Inhaltsangabe

AT-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem (cf. Borel and Serre [2]). For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch [3] con­ sidered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this "topological J^-theory" that this book will study. Topological ^-theory has become an important tool in topology. Using- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with //-space structures are S^, S^ and S’^. Moreover, it is possible to derive a substantial part of stable homotopy theory from A^-theory (cf. J. F. Adams [2]). Further applications to analysis and algebra are found in the work of Atiyah-Singer [2], Bass [1], Quillen [1], and others. A key factor in these applications is Bott periodicity (Bott [2]). The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups (cf.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Max Karoubi received his PhD in mathematics (Doctorat d'Etat) from Paris University in 1967, while working in the CNRS (Centre National de la Recherche Scientifique), under the supervision of Henri Cartan and Alexander Grothendieck.  After his PhD, he took a position of "Maître de Conférences" at the University of Strasbourg until 1972. He was then nominated full Professor at the University of Paris 7-Denis Diderot until 2007. He is now an Emeritus Professor there.

Von der hinteren Coverseite

From the Preface: K-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem. For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch  con­sidered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological K-theory" that this book will study. 

Topological K-theory has become an important tool in topology. Using K- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with H-space structures are S1, S3 and S7. Moreover, it is possible to derive a substantial part of stable homotopy theory from K-theory.

The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups.Thus this book might be regarded as a fairly self-contained introduction to a "generalized cohomology theory".


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387080901: K-Theory. An introduction

Vorgestellte Ausgabe

ISBN 10:  0387080902 ISBN 13:  9780387080901
Hardcover

Suchergebnisse für K-Theory: An Introduction (Classics in Mathematics)

Foto des Verkäufers

Max Karoubi
ISBN 10: 3540798897 ISBN 13: 9783540798897
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - From the Preface: K-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem. For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch considered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological K-theory' that this book will study.TopologicalK-theory has become an important tool in topology. UsingK- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with H-space structures are S1, S3 and S7. Moreover, it is possible to derive a substantial part of stable homotopy theory from K-theory.The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups.Thus this book might be regarded as a fairly self-contained introduction to a 'generalized cohomology theory'. Artikel-Nr. 9783540798897

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Max Karoubi
ISBN 10: 3540798897 ISBN 13: 9783540798897
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -From the Preface: K-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem. For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch considered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological K-theory' that this book will study.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch. Artikel-Nr. 9783540798897

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Karoubi, Max
Verlag: Springer, 2008
ISBN 10: 3540798897 ISBN 13: 9783540798897
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9783540798897_new

Verkäufer kontaktieren

Neu kaufen

EUR 66,66
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Karoubi Max
Verlag: Springer, 2008
ISBN 10: 3540798897 ISBN 13: 9783540798897
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 344 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Artikel-Nr. 7452886

Verkäufer kontaktieren

Neu kaufen

EUR 71,45
Währung umrechnen
Versand: EUR 10,22
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb