Springer, Berlin, 1998. XIV, 460 pages, paperback, (former library book) -Perspectives in Mathematical Logic-
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items.
From the reviews: ..."This work is a very important contribution to the logical literature. It gives a survey of an incredible number of results and methods in the foundations of arithmetic, presented in a clear and systematic way. It will certainly be highly appreciated by specialists working in the field." Mathematical Reviews, USA 1994 ..."It is really a highly interesting book - a survey of a large amount of results presented in a systematic and clear way. It will serve as a source of information for those who want to learn meta-mathematics of first-order arithmetic as well as a reference book for people working in this field." Zentralblatt für Mathematik und Ihre Grenzgebiete, 781.1994.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 14,25 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported Softcover reprint of the original 1st ed. 1993. Artikel-Nr. 354063648X-11-1
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540636489_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items. Artikel-Nr. 9783540636489
Anzahl: 1 verfügbar