Number Theory IV: Transcendental Numbers: 44 (Encyclopaedia of Mathematical Sciences) - Hardcover

Buch 16 von 47: Encyclopaedia of Mathematical Sciences
 
9783540614678: Number Theory IV: Transcendental Numbers: 44 (Encyclopaedia of Mathematical Sciences)

Inhaltsangabe

This book is a survey of the most important directions of research in transcendental number theory. For readers with no specific background in transcendental number theory, the book provides both an overview of the basic concepts and techniques and also a guide to the most important results and references.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.

Von der hinteren Coverseite

This book is a survey of the most important directions of research in transcendental number theory. The central topics in this theory include proofs of irrationality and transcendence of various numbers, especially those that arise as the values of special functions. Questions of this sort go back to ancient times. An example is the old problem of squaring the circle, which Lindemann showed to be impossible in 1882, when he proved that $Öpi$ is a transcendental number. Euler's conjecture that the logarithm of an algebraic number to an algebraic base is transcendental was included in Hilbert's famous list of open problems; this conjecture was proved by Gel'fond and Schneider in 1934. A more recent result was ApÖ'ery's surprising proof of the irrationality of $Özeta(3)$ in 1979. The quantitative aspects of the theory have important applications to the study of Diophantine equations and other areas of number theory. For a reader interested in different branches of number theory, this monograph provides both an overview of the central ideas and techniques of transcendental number theory, and also a guide to the most important results.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9783642082597: Number Theory IV: Transcendental Numbers: 44 (Encyclopaedia of Mathematical Sciences)

Vorgestellte Ausgabe

ISBN 10:  3642082599 ISBN 13:  9783642082597
Verlag: Springer, 2010
Softcover