Algebraic Function Fields And Codes BY Henning Stichtenoth, Springer, Paperback, 1993
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. Topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V.D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 18,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: Versandantiquariat Abendstunde, Ludwigshafen am Rhein, Deutschland
Softcover. Zustand: gut. Erste Aufl. Kartonierte Broschur mit Rücken- und Deckeltitel. Der Buchrücken etwas lichtgebleicht, die Schnitte leicht berieben, das Titelblatt mit Schatten eines entfernten Etiketts, einzelne Seiten mit kleinem bzw. leichtem Knick einer Ecke, ansonsten guter Erhaltungszustand. "This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. Topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V. D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission." (Verlagstext) Henning Stichtenoth (* 3. November 1944) ist ein deutscher Mathematiker. Stichtenoth promovierte 1972 bei Peter Roquette an der Ruprecht-Karls-Universität Heidelberg über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. Bis 2007 war er Professor an der Universität Duisburg-Essen. Zurzeit ist er Professor an der Sabanci-Universität in Istanbul. Er befasst sich mit algebraischer Geometrie, algebraischen Funktionenkörpern und deren Anwendung in der Kodierungstheorie und Kryptographie. (Wikipedia) In englischer Sprache. X, 260, (2) pages. Groß 8° (155 x 235mm). Artikel-Nr. BN32889
Anzahl: 1 verfügbar
Anbieter: exlibris24 Versandantiquariat, Freiburg im Breisgau, Deutschland
Softcover. Zustand: Sehr gut. Sauberes Exemplar mit nur sehr geringen Gebrauchs-/Regalspuren. Broschierter Einband. 270 Seiten. 426 Gramm. 24x16cm. Englisch. X, 260 Seiten. Artikel-Nr. 69793
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: Used. pp. x + 260. Artikel-Nr. 18302130
Anzahl: 1 verfügbar