Verwandte Artikel zu Linear Models with Correlated Disturbances: 358 (Lecture...

Linear Models with Correlated Disturbances: 358 (Lecture Notes in Economics and Mathematical Systems, 358) - Softcover

 
9783540539018: Linear Models with Correlated Disturbances: 358 (Lecture Notes in Economics and Mathematical Systems, 358)

Inhaltsangabe

In each chapter of this volume some specific topics in the econometric analysis of time series data are studied. All topics have in common the statistical inference in linear models with correlated disturbances. The main aim of the study is to give a survey of new and old estimation techniques for regression models with disturbances that follow an autoregressive-moving average process. In the final chapter also several test strategies for discriminating between various types of autocorrelation are discussed. In nearly all chapters it is demonstrated how useful the simple geometric interpretation of the well-known ordinary least squares (OLS) method is. By applying these geometric concepts to linear spaces spanned by scalar stochastic variables, it emerges that well-known as well as new results can be derived in a simple geometric manner, sometimes without the limiting restrictions of the usual derivations, e. g. , the conditional normal distribution, the Kalman filter equations and the Cramer-Rao inequality. The outline of the book is as follows. In Chapter 2 attention is paid to a generalization of the well-known first order autocorrelation transformation of a linear regression model with disturbances that follow a first order Markov scheme. Firstly, the appropriate lower triangular transformation matrix is derived for the case that the disturbances follow a moving average process of order q (MA(q. It turns out that the calculations can be carried out either analytically or in a recursive manner.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

In each chapter of this volume some specific topics in the econometric analysis of time series data are studied. All topics have in common the statistical inference in linear models with correlated disturbances. The main aim of the study is to give a survey of new and old estimation techniques for regression models with disturbances that follow an autoregressive-moving average process. In the final chapter also several test strategies for discriminating between various types of autocorrelation are discussed. In nearly all chapters it is demonstrated how useful the simple geometric interpretation of the well-known ordinary least squares (OLS) method is. By applying these geometric concepts to linear spaces spanned by scalar stochastic variables, it emerges that well-known as well as new results can be derived in a simple geometric manner, sometimes without the limiting restrictions of the usual derivations, e. g. , the conditional normal distribution, the Kalman filter equations and the Cramer-Rao inequality. The outline of the book is as follows. In Chapter 2 attention is paid to a generalization of the well-known first order autocorrelation transformation of a linear regression model with disturbances that follow a first order Markov scheme. Firstly, the appropriate lower triangular transformation matrix is derived for the case that the disturbances follow a moving average process of order q (MA(q. It turns out that the calculations can be carried out either analytically or in a recursive manner.

Reseña del editor

The main aim of this volume is to give a survey of new and old estimation techniques for regression models with correlated disturbances, especially with autoregressive-moving average disturbances. In nearly all chapters the usefulness of the simple geometric interpretation of the classical ordinary Least Squares method is demonstrated. It emerges that both well-known and new results can be derived in a simple geometric manner, e.g., the conditional normal distribution, the Kalman filter equations and the Cramér-Rao inequality. The same geometric interpretation also shows that disturbances which follow an arbitrary correlation process can easily be transformed into a white noise sequence. This is of special interest for Maximum Likelihood estimation. Attention is paid to the appropriate estimation method for the specific situation that observations are missing. Maximum Likelihood estimation of dynamic models is also considered. The final chapter is concerned with several test strategies for detecting the genuine correlation structure among the disturbances. The geometric approach throughout the book provides a coherent insight in apparently different subjects in the econometric field of time series analysis.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

203 S. Ehem. Bibliotheksexemplar...
Diesen Artikel anzeigen

EUR 16,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 13,72 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387539010: Linear Models With Correlated Disturbances (Lecture Notes in Economics & Mathematical Systems)

Vorgestellte Ausgabe

ISBN 10:  0387539018 ISBN 13:  9780387539010
Softcover

Suchergebnisse für Linear Models with Correlated Disturbances: 358 (Lecture...

Foto des Verkäufers

Knottnerus, Paul:
ISBN 10: 3540539018 ISBN 13: 9783540539018
Gebraucht Softcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. 203 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. 3540539018 Sprache: Englisch Gewicht in Gramm: 900. Artikel-Nr. 2347845

Verkäufer kontaktieren

Gebraucht kaufen

EUR 8,42
Währung umrechnen
Versand: EUR 16,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Knottnerus, Paul:
Verlag: Springer Heidelberg, 1991
ISBN 10: 3540539018 ISBN 13: 9783540539018
Gebraucht Paperback

Anbieter: ralfs-buecherkiste, Herzfelde, MOL, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Gut. 196 Seiten guter Zustand/ good. Bibl.-Ex. ha1020804 Sprache: Englisch Gewicht in Gramm: 350. Artikel-Nr. 130470

Verkäufer kontaktieren

Gebraucht kaufen

EUR 10,00
Währung umrechnen
Versand: EUR 105,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knottnerus, Paul
Verlag: Springer, 1991
ISBN 10: 3540539018 ISBN 13: 9783540539018
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783540539018_new

Verkäufer kontaktieren

Neu kaufen

EUR 118,68
Währung umrechnen
Versand: EUR 13,72
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Paul Knottnerus
Verlag: Springer, 1991
ISBN 10: 3540539018 ISBN 13: 9783540539018
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. reprint edition. 204 pages. 9.61x6.69x0.48 inches. In Stock. Artikel-Nr. x-3540539018

Verkäufer kontaktieren

Neu kaufen

EUR 151,23
Währung umrechnen
Versand: EUR 11,45
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Paul Knottnerus
ISBN 10: 3540539018 ISBN 13: 9783540539018
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In each chapter of this volume some specific topics in the econometric analysis of time series data are studied. All topics have in common the statistical inference in linear models with correlated disturbances. The main aim of the study is to give a survey of new and old estimation techniques for regression models with disturbances that follow an autoregressive-moving average process. In the final chapter also several test strategies for discriminating between various types of autocorrelation are discussed. In nearly all chapters it is demonstrated how useful the simple geometric interpretation of the well-known ordinary least squares (OLS) method is. By applying these geometric concepts to linear spaces spanned by scalar stochastic variables, it emerges that well-known as well as new results can be derived in a simple geometric manner, sometimes without the limiting restrictions of the usual derivations, e. g. , the conditional normal distribution, the Kalman filter equations and the Cramer-Rao inequality. The outline of the book is as follows. In Chapter 2 attention is paid to a generalization of the well-known first order autocorrelation transformation of a linear regression model with disturbances that follow a first order Markov scheme. Firstly, the appropriate lower triangular transformation matrix is derived for the case that the disturbances follow a moving average process of order q (MA(q'. It turns out that the calculations can be carried out either analytically or in a recursive manner. Artikel-Nr. 9783540539018

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 61,88
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb