In der vorliegenden Arbeit werden die Einsatzmöglichkeiten approximativer Verfahren für Public-Key-Kryptosysteme untersucht. Dazu werden in einer allgemeinverständlichen Einleitung die notwendigen Grundlagen erarbeitet. Im Anschluß daran werden Resultate über eine reellwertige Approximation periodischer und nichtperiodischer Funktionen für Verschlüsselungssysteme mit öffentlichem Schlüssel entwickelt. Weiterhin werden die kryptologischen Eigenschaften rationaler Zahlen untersucht. Diese fließen in die Entwicklung eines neuen Konzeptes für ein Public-Key-Kryptosystem ein, die Public-Key-Hill-Chiffre, die auch digitale Unterschriften zuläßt. Zur Abrundung der Thematik werden weitere Anwendungen in verwandten Gebieten dargestellt: die exakte Arithmetik mit rationalen Zahlen auf der Basis von Gleitkommazahlen und ein neuer Ansatz für Faktorisierungsalgorithmen. Damit ist das zentrale Ergebnis die Benutzung rationaler Zahlen in Public-Key-Kryptosystemen, die eine neue Forschungsrichtung innerhalb der Kryptologie eröffnen könnte. Der fachkundige Leser erhält Informationen über neue Forschungsansätze und Methoden in der Kryptologie, fachfremde Leser erhalten einen guten Überblick über die Problemstellung der Entwicklung neuer Public-Key-Kryptosysteme.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In der vorliegenden Arbeit werden die Einsatzmöglichkeiten approximativer Verfahren für Public-Key-Kryptosysteme untersucht. Dazu werden in einer allgemeinverständlichen Einleitung die notwendigen Grundlagen erarbeitet. Im Anschluß daran werden Resultate über eine reellwertige Approximation periodischer und nichtperiodischer Funktionen für Verschlüsselungssysteme mit öffentlichem Schlüssel entwickelt. Weiterhin werden die kryptologischen Eigenschaften rationaler Zahlen untersucht. Diese fließen in die Entwicklung eines neuen Konzeptes für ein Public-Key-Kryptosystem ein, die Public-Key-Hill-Chiffre, die auch digitale Unterschriften zuläßt. Zur Abrundung der Thematik werden weitere Anwendungen in verwandten Gebieten dargestellt: die exakte Arithmetik mit rationalen Zahlen auf der Basis von Gleitkommazahlen und ein neuer Ansatz für Faktorisierungsalgorithmen. Damit ist das zentrale Ergebnis die Benutzung rationaler Zahlen in Public-Key-Kryptosystemen, die eine neue Forschungsrichtung innerhalb der Kryptologie eröffnen könnte. Der fachkundige Leser erhält Informationen über neue Forschungsansätze und Methoden in der Kryptologie, fachfremde Leser erhalten einen guten Überblick über die Problemstellung der Entwicklung neuer Public-Key-Kryptosysteme.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,20 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland
Broschiert. Zustand: Gut. 174 Seiten; Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.). der Buchzustand ist ordentlich und dem Alter entsprechend gut. Sprache: Deutsch Gewicht in Gramm: 350. Artikel-Nr. 1466703
Anzahl: 1 verfügbar
Anbieter: NEPO UG, Rüsselsheim am Main, Deutschland
Broschiert. Zustand: Gut. VII, 174 S. , 25 cm Exemplar aus einer wissenchaftlichen Bibliothek Sprache: Deutsch Gewicht in Gramm: 550. Artikel-Nr. 184088
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Approximative Public-Key-Kryptosysteme | Hartmut Isselhorst (u. a.) | Taschenbuch | vii | Deutsch | 1989 | Springer-Verlag GmbH | EAN 9783540509042 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 102143220
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In der vorliegenden Arbeit werden die Einsatzmöglichkeiten approximativer Verfahren für Public-Key-Kryptosysteme untersucht. Dazu werden in einer allgemeinverständlichen Einleitung die notwendigen Grundlagen erarbeitet. Im Anschluß daran werden Resultate über eine reellwertige Approximation periodischer und nichtperiodischer Funktionen für Verschlüsselungssysteme mit öffentlichem Schlüssel entwickelt. Weiterhin werden die kryptologischen Eigenschaften rationaler Zahlen untersucht. Diese fließen in die Entwicklung eines neuen Konzeptes für ein Public-Key-Kryptosystem ein, die Public-Key-Hill-Chiffre, die auch digitale Unterschriften zuläßt. Zur Abrundung der Thematik werden weitere Anwendungen in verwandten Gebieten dargestellt: die exakte Arithmetik mit rationalen Zahlen auf der Basis von Gleitkommazahlen und ein neuer Ansatz für Faktorisierungsalgorithmen. Damit ist das zentrale Ergebnis die Benutzung rationaler Zahlen in Public-Key-Kryptosystemen, die eine neue Forschungsrichtung innerhalb der Kryptologie eröffnen könnte. Der fachkundige Leser erhält Informationen über neue Forschungsansätze und Methoden in der Kryptologie, fachfremde Leser erhalten einen guten Überblick über die Problemstellung der Entwicklung neuer Public-Key-Kryptosysteme. Artikel-Nr. 9783540509042
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In der vorliegenden Arbeit werden die Einsatzmöglichkeiten approximativer Verfahren für Public-Key-Kryptosysteme untersucht. Dazu werden in einer allgemeinverständlichen Einleitung die notwendigen Grundlagen erarbeitet. Im Anschluß daran werden Resultate über eine reellwertige Approximation periodischer und nichtperiodischer Funktionen für Verschlüsselungssysteme mit öffentlichem Schlüssel entwickelt. Weiterhin werden die kryptologischen Eigenschaften rationaler Zahlen untersucht. Diese fließen in die Entwicklung eines neuen Konzeptes für ein Public-Key-Kryptosystem ein, die Public-Key-Hill-Chiffre, die auch digitale Unterschriften zuläßt. Zur Abrundung der Thematik werden weitere Anwendungen in verwandten Gebieten dargestellt: die exakte Arithmetik mit rationalen Zahlen auf der Basis von Gleitkommazahlen und ein neuer Ansatz für Faktorisierungsalgorithmen. Damit ist das zentrale Ergebnis die Benutzung rationaler Zahlen in Public-Key-Kryptosystemen, die eine neue Forschungsrichtung innerhalb der Kryptologie eröffnen könnte. Der fachkundige Leser erhält Informationen über neue Forschungsansätze und Methoden in der Kryptologie, fachfremde Leser erhalten einen guten Überblick über die Problemstellung der Entwicklung neuer Public-Key-Kryptosysteme.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Deutsch. Artikel-Nr. 9783540509042
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540509042_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 181 pages. German language. 9.61x6.69x0.42 inches. In Stock. Artikel-Nr. x-3540509046
Anzahl: 2 verfügbar