2. Divisors and line bundles ........................ 99. 2.1. Divisors .............................. 99. 2.2. Line bundles ............................ 100. 2.3. Sections of line bundles ....................... 101. 2.4. The Riemann-Roch Theorem ..................... 103. 2.5. Line bundles and embeddings in projective space ............ 105. 2.6. Hyperelliptic curves ......................... 106. 3. Abelian varieties ............................ 108. 3.1. Complex tori and Abelian varieties .................. 108. 3.2. Line bundles on Abelian varieties ................... 109. 3.3. Abelian surfaces .......................... 111. 4. Jacobi varieties ............................. 114. 4.1. The algebraic Jacobian ....................... 114. 4.2. The analytic/transcendental Jacobian ................. 114. 4.3. Abel's Theorem and Jacobi inversion ................. 119. 4.4. Jacobi and Kummer surfaces ..................... 121. 5. Abelian surfaces of type (1,4) ....................... 123. 5.1. The generic case .......................... 123. 5.2. The non-generic case ........................ 124. V. Algebraic completely integrable Hamiltonian systems ........ 127. 1. Introduction .............................. 127. 2. A.c.i. systems ............................. 129. 3. Painlev~ analysis for a.c.i, systems .................... 135. 4. The linearization of two-dkmensional a.e.i, systems ............. 138. 5. Lax equations ............................. 140. VI. The Mumford systems ..................... 143. 1. Introduction .............................. 143. 2. Genesis ................................ 145. 2.1. The algebra of pseudo-differential operators .............. 145. 2.2. The matrix associated to two commuting operators ........... 146. 2.3. The inverse construction ....................... 150. 2.4. The KP vector fields ........................ 152. ix 3. Multi-Hamiltonian structure and symmetries ................ 155. 3.1. The loop algebra 9(q ........................ 155. 3.2. Reducing the R-brackets and the vector field ~ ............. 157. 4. The odd and the even Mumford systems .................. 161. 4.1. The (odd) Mumford system ..................... 161. 4.2. The even Mumford system ...................... 163.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
2. Divisors and line bundles ........................ 99. 2.1. Divisors .............................. 99. 2.2. Line bundles ............................ 100. 2.3. Sections of line bundles ....................... 101. 2.4. The Riemann-Roch Theorem ..................... 103. 2.5. Line bundles and embeddings in projective space ............ 105. 2.6. Hyperelliptic curves ......................... 106. 3. Abelian varieties ............................ 108. 3.1. Complex tori and Abelian varieties .................. 108. 3.2. Line bundles on Abelian varieties ................... 109. 3.3. Abelian surfaces .......................... 111. 4. Jacobi varieties ............................. 114. 4.1. The algebraic Jacobian ....................... 114. 4.2. The analytic/transcendental Jacobian ................. 114. 4.3. Abel's Theorem and Jacobi inversion ................. 119. 4.4. Jacobi and Kummer surfaces ..................... 121. 5. Abelian surfaces of type (1,4) ....................... 123. 5.1. The generic case .......................... 123. 5.2. The non-generic case ........................ 124. V. Algebraic completely integrable Hamiltonian systems ........ 127. 1. Introduction .............................. 127. 2. A.c.i. systems ............................. 129. 3. Painlev~ analysis for a.c.i, systems .................... 135. 4. The linearization of two-dkmensional a.e.i, systems ............. 138. 5. Lax equations ............................. 140. VI. The Mumford systems ..................... 143. 1. Introduction .............................. 143. 2. Genesis ................................ 145. 2.1. The algebra of pseudo-differential operators .............. 145. 2.2. The matrix associated to two commuting operators ........... 146. 2.3. The inverse construction ....................... 150. 2.4. The KP vector fields ........................ 152. ix 3. Multi-Hamiltonian structure and symmetries ................ 155. 3.1. The loop algebra 9(q ........................ 155. 3.2. Reducing the R-brackets and the vector field ~ ............. 157. 4. The odd and the even Mumford systems .................. 161. 4.1. The (odd) Mumford system ..................... 161. 4.2. The even Mumford system ...................... 163.
This book treats the general theory of Poisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out.
In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. 2nd ed. x, 256 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05111 9783540423379 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2491358
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -n . 150. 2.4. The KP vector fields . 152. ix 3. Multi-Hamiltonian structure and symmetries . 155. 3.1. The loop algebra 9(q . 155. 3.2. Reducing the R-brackets and the vector field ~ . 157. 4. The odd and the even Mumford systems . 161. 4.1. The (odd) Mumford system . 161. 4.2. The even Mumford system . 163.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Artikel-Nr. 9783540423379
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book treats the general theory ofPoisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out.In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry. Artikel-Nr. 9783540423379
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 871361/202
Anzahl: 1 verfügbar