Introduction.- Integrable Hamiltonian systems on affine Poisson varietie: Affine Poisson varieties and their morphisms; Integrable Hamiltonian systems and their morphisms; Integrable Hamiltonian systems on other spaces.- Integrable Hamiltonian systems and symmetric products of curves: The systems and their integrability; The geometry of the level manifolds .- Interludium: the geometry of Abelian varieties: Divisors and line bundles; Abelian varieties; Jacobi varieties; Abelian surfaces of type (1,4).- Algebraic completely integrable Hamiltonian systems: A.c.i. systems; Painlev analysis for a.c.i. systems; The linearization of two-dimensional a.c.i. systems; Lax equations.- The Mumford systems: Genesis; Multi-Hamiltonian structure and symmetries; The odd and the even Mumford systems; The general case .- Two-dimensional a.c.i. systems and applications: The genus two Mumford systems; Application: generalized Kummersurfaces; The Garnier potential; An integrable geodesic flow on SO(4);...
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
C. Laurent-Gengoux research focus lies on Poisson geometry, Lie-groups and integrable systems. He is the author of 14 research articles. Furthermore, he is committed to teaching and set up several mathematics projects with local high schools. In 2002 he earned his doctorate in mathematics with a dissertation on " Quelques problèmes analytiques et géométriques sur les algèbres et superalgèbres de champs et superchamps de vecteurs". A. Pichereau earned her doctorate in mathematics with a dissertation on "Poisson (co)homology and isolated singularities in low dimensions, with an application in the theory of deformations" under the supervision of P. Vanheacke in 2006. She has since published four journal articles on Poisson structures and contributed to the Proceedings of "Algebraic and Geometric Deformation Spaces". P. Vanheacke's research focus lies on integrable systems, Abelian varieties, Poisson algebra/geometry and deformation theory. In 1991 he earned his doctorate in mathematics with a dissertation on "Explicit techniques for studying two-dimensional integrable systems" and has published numerous research articles since.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. 2nd ed. x, 256 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05111 9783540423379 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2491358
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -n . 150. 2.4. The KP vector fields . 152. ix 3. Multi-Hamiltonian structure and symmetries . 155. 3.1. The loop algebra 9(q . 155. 3.2. Reducing the R-brackets and the vector field ~ . 157. 4. The odd and the even Mumford systems . 161. 4.1. The (odd) Mumford system . 161. 4.2. The even Mumford system . 163.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Artikel-Nr. 9783540423379
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book treats the general theory ofPoisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out.In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry. Artikel-Nr. 9783540423379
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 276 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 871361/202
Anzahl: 1 verfügbar