Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains.
This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques.
Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
From the reviews:
"This booklet is the reprint of a thesis. It addresses image interpretation using a neural network architecture mimicking the human visual system. ... The exposition is divided in two parts, namely theory and applications. ... In short this thesis is very interesting, well written and easy to read." (Jean Th. Lapresté, Zentralblatt MATH, Vol. 1041 (16), 2004)
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains.
This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques.
Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,72 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
Zustand: Very Good. This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Artikel-Nr. 7719-9783540407225
Anzahl: 1 verfügbar
Anbieter: Emile Kerssemakers ILAB, Heerlen, Niederlande
23 cm. original paperback. 224 pp. ills. references. index. "Lecture Notes in Computer Science". -(libr labels, library stamp, otherwise (very) good). 370g. Artikel-Nr. 71746
Anzahl: 1 verfügbar
Anbieter: Ammareal, Morangis, Frankreich
Softcover. Zustand: Très bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Edition 2003. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Slight signs of wear on the cover. Edition 2003. Ammareal gives back up to 15% of this item's net price to charity organizations. Artikel-Nr. E-612-052
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains.This booksets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks. Artikel-Nr. 9783540407225
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540407225_new
Anzahl: Mehr als 20 verfügbar