This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
This book constitutes the thoroughly refereed post-proceedings of the First PASCAL (pattern analysis, statistical modelling and computational learning) Machine Learning Challenges Workshop, MLCW 2005, held in Southampton, UK in April 2005. The 25 revised full papers presented were carefully selected during two rounds of reviewing and improvement from about 50 submissions. The papers reflect the concepts of three challenges dealt with in the workshop: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; the second challenge was to recognize objects from a number of visual object classes in realistic scenes; the third challenge of recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,75 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540334279_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. Series: Lecture Notes in Computer Science. Num Pages: 475 pages, biography. BIC Classification: UYQM. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 25. Weight in Grams: 813. . 2006. Paperback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9783540334279
Anzahl: 15 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 462 pages. 9.25x6.25x0.75 inches. In Stock. Artikel-Nr. x-3540334270
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 484 pp. Englisch. Artikel-Nr. 9783540334279
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding. Artikel-Nr. 9783540334279
Anzahl: 1 verfügbar