The American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology in 2008.
With the science of robotics undergoing a major transformation just now, Springer’s new, authoritative handbook on the subject couldn’t have come at a better time. Having broken free from its origins in industry, robotics has been rapidly expanding into the challenging terrain of unstructured environments. Unlike other handbooks that focus on industrial applications, the Springer Handbook of Robotics incorporates these new developments. Just like all Springer Handbooks, it is utterly comprehensive, edited by internationally renowned experts, and replete with contributions from leading researchers from around the world. The handbook is an ideal resource for robotics experts but also for people new to this expanding field.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 37,22 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,3400grams, ISBN:9783540239574. Artikel-Nr. 7093147
Anzahl: 1 verfügbar
Anbieter: BUCHSERVICE / ANTIQUARIAT Lars Lutzer, Wahlstedt, Deutschland
Hardcover. Zustand: gut. Auflage: 2008 (20. Mai 2008). "A new, authoritative and utterly comprehensive reference work on robotics that incorporates new developments, surpassing the narrow scope of other robotics handbooks that focus on industrial applications. Edited by internationally renowned experts. With the science of robotics undergoing a major transformation just now, Springer's new, authoritative handbook on the subject couldn't have come at a better time. Having broken free from its origins in industry, robotics has been rapidly expanding into the challenging terrain of unstructured environments. Unlike other handbooks that focus on industrial applications, the Springer Handbook of Robotics incorporates these new developments. Just like all Springer Handbooks, it is utterly comprehensive, edited by internationally renowned experts, and replete with contributions from leading researchers from around the world. The handbook is an ideal resource for robotics experts but also for people new to this expanding field. With the science of robotics undergoing a major transformation just now, Springer's new, authoritative handbook on the subject couldn't have come at a better time. Having broken free from its origins in industry, robotics has been rapidly expanding into the challenging terrain of unstructured environments. Unlike other handbooks that focus on industrial applications, the Springer Handbook of Robotics incorporates these new developments. Just like all Springer Handbooks, it is utterly comprehensive, edited by internationally renowned experts, and replete with contributions from leading researchers from around the world. The handbook is an ideal resource for robotics experts but also for people new to this expanding field. Bruno Siciliano is Professor of Control and Robotics at the University of Naples Federico II in Italy, President of the IEEE Robotics and Automation Society, and a Fellow of both IEEE and ASME. Oussama Khatib is Professor of Computer Science at Stanford University in the USA, President of the International Foundation of Robotics Research, an IEEE Fellow, and a recipient of the Japan Robot Association Award in Research and Development. Introduction (Bruno Siciliano, Oussama Khatib) Part A: Robotics Foundations (David Orin) Part A presents the fundamental principles and methods that are used to model, design, and control a robotic system. All of the foundational topics are included in this part: kinematics, dynamics, mechanical design and actuation, sensing and estimation, motion planning, motion control, force control, robotic systems architectures and programming, and AI reasoning methods for task planning and learning. A chapter is devoted to each of these topics. The topics are expanded and applied to specific robotic structures and systems in subsequent parts. Chap. 1. Kinematics (Ken Waldron, James Schmiedeler) Chap. 2. Dynamics (Roy Featherstone, David Orin) Chap. 3. Mechanisms and Actuation (Victor Scheinman, Michael McCarthy) Chap. 4. Sensing and Estimation (Henrik Christensen, Gregory Hager) Chap. 5. Motion Planning (Lydia Kavraki, Steve LaValle) Chap. 6. Motion Control (Wankyun Chung, Li-Chen Fu, Su-Hau Hsu) Chap. 7. Force Control (Luigi Villani, Joris De Schutter) Chap. 8. Robotic Systems Architectures and Programming (David Kortenkamp, Reid Simmons) Chap. 9. AI Reasoning Methods for Robotics (Joachim Hertzberg, Raja Chatila) Part B: Robot Structures (Frank Park) Part B is concerned with the design, modeling, motion planning, and control of the actual physical realizations of a robot. Some of the more obvious mechanical structures that come to mind are arms, legs, and hands; to this list can be added wheeled vehicles and platforms, and robot structures at the micro and nano scales. With separate chapters devoted to performance criteria and model identification, the chapters in this part successively examine serial redundant mechanisms, parallel mechanisms, flexible robots, robot hands, robot legs, wheeled robots, and micro- and nanoscale robots. Chap. 10. Performance Evaluation and Design Criteria (Jorge Angeles, Frank Park) Chap. 11. Redundant Manipulators (Stefano Chiaverini, Giuseppe Oriolo, Ian Walker) Chap. 12. Parallel Mechanisms and Robots (Jean-Pierre Merlet, Clément Gosselin) Chap. 13. Robots with Flexible Elements (Alessandro De Luca, Wayne Book) Chap. 14. Model Identification (John Hollerbach, Wisama Khalil, Maxime Gautier, ) Chap. 15. Robot Hands (Claudio Melchiorri, Makoto Kaneko) Chap. 16. Legged Robots (Shuuji Kajita, Bernard Espiau) Chap. 17. Wheeled Robots (Guy Campion, Woojin Chung) Chap. 18. Micro/Nano Robots (Brad Nelson, Lixin Dong, Fumihito Arai) Part C: Sensing and Perception (Henrik Christensen) Part C covers different sensory modalities and integration of sensor data across space and time to generate models of robots and the external environment. The main sensor types such as tactile, odometry, GPS, ranging and visual perception are presented. Both basic sensor models, sensor data processing and associated representations are covered. Finally, a chapter on sensor fusion itroduces the mathematical tools needed for integration of sensor information across space and time. Chap. 19. Force and Tactile Sensors (Mark Cutkosky, Robert Howe, William Provancher) Chap. 20. Inertial Sensors, GPS and Odometry (Gregory Dudek, Michael Jenkin) Chap. 21. Sonar Sensing (Lindsay Kleeman, Roman Kuc) Chap. 22. Range Sensors (Robert Fisher, Kurt Konolige) Chap. 23. 3D Vision and Recognition (Kostas Daniliidis, Jan-Olof Eklundh) Chap. 24. Visual Servoing and Visual Tracking (François Chaumette, Seth Hutchinson) Chap. 25. Sensor Fusion (Hugh Durrant-Whyte, Tom Henderson) Part D: Manipulation and Interfaces (Makoto Kaneko) Part D is separated into two subparts. The first half is concerned with manipulation where frameworks of modeling, motion planning, and control of grasp and manipulation of an object are addressed, and the second half is concerned with interfaces where physical human-robot interac. Artikel-Nr. BN22299
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 1611 | Sprache: Englisch | Produktart: Sonstiges. Artikel-Nr. 1727066/202
Anzahl: 1 verfügbar