This book presents several circuits that are required for the full integration of an optical transmitter in standard CMOS. The main emphasis is placed on high-speed receivers with a bitrate of up to 1 Gb/s. The possibility of including the photodiode in a receiver is investigated and the problems encountered are discussed.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book presents several circuits that are required for the full integration of an optical transmitter in standard CMOS. The main emphasis is placed on high-speed receivers with a bitrate of up to 1 Gb/s. The possibility of including the photodiode in a receiver is investigated and the problems encountered are discussed. Concerning the transmitter aspect, a CMOS LED driver is described. The final chapter addresses electrical interference problems on a chip and proposes countermeasures. The various circuits in this book have all been realized and measurement results are presented, paving the way for single chip communication systems in which the optical interfaces are integrated on the same die as the digital circuitry.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
103 figs., XV, 171 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Springer Series in Advanced Microelectronics , Vol. 14 Sprache: Englisch. Artikel-Nr. 1433DB
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540202097_new
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This work investigates the feasibility of the integration of interface circuits for op tical communication systems in a standard unmodified digital CMOS process. This paves the way for single chip communication systems where the optical interfaces are integrated on the same die as the required digital circuitry. The optical receiver is a key element in the optical communication link. In this work, a transimpedance amplifier, which consists of a voltage amplifier with resis tive feedback, is used as the first stage. Unlike for many other circuits, the optimal place of its dominant pole is the input node. It is also demonstrated that a high gain of the voltage amplifier is primordial to obtain good performances and that this may be obtained through the use of multiple stages. Noise aspects are investigated and the conclusion is drawn that the amplifier's input capacitance can be smaller than the photodiode's capacitance for optimal performance.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch. Artikel-Nr. 9783540202097
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This work investigates the feasibility of the integration of interface circuits for op tical communication systems in a standard unmodified digital CMOS process. This paves the way for single chip communication systems where the optical interfaces are integrated on the same die as the required digital circuitry. The optical receiver is a key element in the optical communication link. In this work, a transimpedance amplifier, which consists of a voltage amplifier with resis tive feedback, is used as the first stage. Unlike for many other circuits, the optimal place of its dominant pole is the input node. It is also demonstrated that a high gain of the voltage amplifier is primordial to obtain good performances and that this may be obtained through the use of multiple stages. Noise aspects are investigated and the conclusion is drawn that the amplifier's input capacitance can be smaller than the photodiode's capacitance for optimal performance. Artikel-Nr. 9783540202097
Anzahl: 1 verfügbar