Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. VIII, 122 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-01238 3540156569 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2485095
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist. Artikel-Nr. 9783540156567
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540156567_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1985 edition. 136 pages. 11.60x8.26x0.31 inches. In Stock. Artikel-Nr. x-3540156569
Anzahl: 2 verfügbar