Three years have passed since the publication of the Russian edition of this book, during which time the method described has found new applications. In [26], the author has introduced the concept of the periodic product of two groups. For any two groups G and G without elements of order 2 and for any 1 2 odd n ~ 665, a group G @ Gmay be constructed which possesses several in- 1 2 teresting properties. In G @ G there are subgroups 6 and 6 isomorphic to 1 2 1 2 G and G respectively, such that 6 and 6 generate G @ G and intersect 1 2 1 2 1 2 in the identity. This operation "@" is commutative, associative and satisfies Mal'cev's postulate (see [27], p. 474), i.e., it has a certain hereditary property for subgroups. For any element x which is not conjugate to an element of either 6 1 or 6 , the relation xn = 1 holds in G @ G * From this it follows that when 2 1 2 G and G are periodic groups of exponent n, so is G @ G * In addition, if G 1 2 1 2 1 and G are free periodic groups of exponent n the group G @ G is also free 2 1 2 periodic with rank equal to the sum of the ranks of G and G * I believe that groups 1 2
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Three years have passed since the publication of the Russian edition of this book, during which time the method described has found new applications. In [26], the author has introduced the concept of the periodic product of two groups. For any two groups G and G without elements of order 2 and for any 1 2 odd n ~ 665, a group G @ Gmay be constructed which possesses several in 1 2 teresting properties. In G @ G there are subgroups 6 and 6 isomorphic to 1 2 1 2 G and G respectively, such that 6 and 6 generate G @ G and intersect 1 2 1 2 1 2 in the identity. This operation "@" is commutative, associative and satisfies Mal'cev's postulate (see [27], p. 474), i.e., it has a certain hereditary property for subgroups. For any element x which is not conjugate to an element of either 6 1 or 6 , the relation xn = 1 holds in G @ G · From this it follows that when 2 1 2 G and G are periodic groups of exponent n, so is G @ G · In addition, if G 1 2 1 2 1 and G are free periodic groups of exponent n the group G @ G is also free 2 1 2 periodic with rank equal to the sum of the ranks of G and G · I believe that groups 1 2
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 20 ADI 9783540087281 Sprache: Englisch Gewicht in Gramm: 1150. Artikel-Nr. 2507289
Anzahl: 1 verfügbar
Anbieter: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Deutschland
X, 311 Seiten, (X, 311 pp.), Aus der Präsenzbibliothek eines Institutes, daher außergewöhnlich gut erhalten! (From the reference library of an institute, therefore exceptionally well preserved!). 3540087281 Sprache: Englisch Gewicht in Gramm: 640 Groß 8°, Original-Leinen, Bibliotheks-Exemplar (ordnungsgemäß entwidmet) mit leichten Rückständen vom Rückenschild, Stempel auf Titel, insgesamt gutes und innen sauberes Exemplar, (library copy in good condition), Artikel-Nr. 120166
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Good. Volume 95. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,750grams, ISBN:3540087281. Artikel-Nr. 9898457
Anzahl: 1 verfügbar
Anbieter: Antiquariat Deinbacher, Murstetten, Österreich
8° , Hardcover/Pappeinband. 1.Auflage,. 326 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783540087281 Sprache: Englisch Gewicht in Gramm: 700. Artikel-Nr. 141164
Anzahl: 1 verfügbar
Anbieter: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Deutschland
VIII, 146 Seiten, (VIII, 146 pp.), 3540087281 Sprache: Englisch Gewicht in Gramm: 380 Groß 8°, Original-Leinen, Bibliotheks-Exemplar (ordnungsgemäß entwidmet) mit leichten Rückständen vom Rückenschild, Stempel auf Vorsatz und Titel, insgesamt gutes und innen sauberes Exemplar, (library copy in good condition), Artikel-Nr. 120168
Anzahl: 1 verfügbar