The interest in the mathematical modeling of transportation systems stems from the need to predict how people might make use of new or improved transport infrastruc ture in order to evaluate the benefit of the required investments. To this end it is necessary to build models of the demand for transportation and models that de termine the way in which people who travel use the transportation network. If such models may be constructed and their validity reasonably assured, then the predic tion of the traffic flows on future and present transportation links may be carried out by simulating future situations and then evaluating the potential benefits of alternative improvement projects. In the attempts that were made to construct mathematical models of transportation networks, the notion of equilibrium plays a central role. Suppose that the demand for transportation, that is, the number of trips that occur between the - rious origins and destinations is known. Then it is necessary to determine how these trips are attracted to the alternative routes available between origins and destinations. Knight (1924), gave a simple and intuitively clear description of the behaviour of road traffic under conditions of congestion.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The interest in the mathematical modeling of transportation systems stems from the need to predict how people might make use of new or improved transport infrastruc ture in order to evaluate the benefit of the required investments. To this end it is necessary to build models of the demand for transportation and models that de termine the way in which people who travel use the transportation network. If such models may be constructed and their validity reasonably assured, then the predic tion of the traffic flows on future and present transportation links may be carried out by simulating future situations and then evaluating the potential benefits of alternative improvement projects. In the attempts that were made to construct mathematical models of transportation networks, the notion of equilibrium plays a central role. Suppose that the demand for transportation, that is, the number of trips that occur between the - rious origins and destinations is known. Then it is necessary to determine how these trips are attracted to the alternative routes available between origins and destinations. Knight (1924), gave a simple and intuitively clear description of the behaviour of road traffic under conditions of congestion.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
(Berlin. XXIII, 432 S. : graph. Darst. ; 25 cm Ehem. Bibliotheksexemplar in GUTEM Zustand, wenige Gebrauchsspuren. Ex-library in GOOD condition, few traces of use. MIIa 432 3540076204 Sprache: Deutsch Gewicht in Gramm: 550. Artikel-Nr. 2071961
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. 432 pages. Ex-Library Book in good condition. Buch in gutem Zustand mit Stempel und Signatur - aus Bibliothek ausgeschieden. 9783540076209 Sprache: Englisch Gewicht in Gramm: 750. Artikel-Nr. 306424
Anzahl: 1 verfügbar
Anzahl: Mehr als 20 verfügbar
Anbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland
Broschiert. Zustand: Gut. XXIII, 432 Seiten : graph. Darst. Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.); leichte altersbedingte Anbräunung des Papiers; der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 620. Artikel-Nr. 1698609
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The interest in the mathematical modeling of transportation systems stems from the need to predict how people might make use of new or improved transport infrastruc ture in order to evaluate the benefit of the required investments. To this end it is necessary to build models of the demand for transportation and models that de termine the way in which people who travel use the transportation network. If such models may be constructed and their validity reasonably assured, then the predic tion of the traffic flows on future and present transportation links may be carried out by simulating future situations and then evaluating the potential benefits of alternative improvement projects. In the attempts that were made to construct mathematical models of transportation networks, the notion of equilibrium plays a central role. Suppose that the demand for transportation, that is, the number of trips that occur between the - rious origins and destinations is known. Then it is necessary to determine how these trips are attracted to the alternative routes available between origins and destinations. Knight (1924), gave a simple and intuitively clear description of the behaviour of road traffic under conditions of congestion. Artikel-Nr. 9783540076209
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783540076209_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 464 pages. 9.61x6.69x0.94 inches. In Stock. Artikel-Nr. x-3540076204
Anzahl: 2 verfügbar