Dynamik flexibler Mehrkörpersysteme: Methoden der Mechanik zum rechnergestützten Entwurf und zur Analyse mechatronischer Systeme (Grundlagen und Fortschritte der Ingenieurwissenschaften)

0 durchschnittliche Bewertung
( 0 Bewertungen bei Goodreads )
 
9783528066291: Dynamik flexibler Mehrkörpersysteme: Methoden der Mechanik zum rechnergestützten Entwurf und zur Analyse mechatronischer Systeme (Grundlagen und Fortschritte der Ingenieurwissenschaften)
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:
 
 
Reseña del editor:

Neben einer Einführung in Elastizitätstheorie und Finite-Elemente-Methode werden die Grundlagen zur Dynamik flexibler Mehrkörpersysteme so dargelegt, wie sie für die Entwicklung von Simluationsprogrammen notwendig sind. Es werden besonders auch Probleme der Kopplung von FEM- und Mehrkörpersystem-Simulationsprogrammen angesprochen.

Contraportada:

Richard Schwertassek, Oskar Wallrapp
Dynamik flexibler Mehrkörpersysteme

Software zum rechnergestützten Entwurf und zur Analyse mechatronischer Systeme enthält u. a. Optionen zur Berücksichtigung von Mehrkörpersystemen (MKS). Solche Werkzeuge finden wachsende Verbreitung und verändern die Arbeitsweise der Ingenieure. Die zur Einsparung von Material und Energie angestrebte Leichtbauweise technischer Systeme erfordert die Modellierung von Verformungen der Körper, steigert die Komplexität der Modelle und erschwert die Interpretation der Ergebnisse von MKS-Software ("don't trust the pretty pictures").
Die Anwendung der leistungsfähigen, aber wegen ihrer Komplexität auch fehleranfälligen MKS-Programme erfordert das Verständnis der ihnen zugrunde liegenden Theorie. Methoden der Mechanik zur Analyse flexibler Mehrkörpersysteme werden hier in einer Form vermittelt, die den Umgang mit MKS-Programmen erleichtern soll. Die Darstellung geht von den Grundlagen der Kontinuumsmechanik aus und orientiert sich nicht nur an der Entwicklung von MKS-Programmen. Wie an Beispielen gezeigt wird, können die Verfahren auch mit Computer Algebra Systemen (z.B. Mathematica) genutzt werden, um mit einfachen Modellen die Tragfähigkeit von Aussagen komplexer Programme abzuschätzen. Die Analyse einfacher Modelle erlaubt überdies die Verbesserung der für technische Problemstellungen aus der Praxis notwendigerweise oft sehr komplexen Modelle und ermöglicht damit eine effizientere Nutzung der Entwurfs- und Analyseprogramme.

Der Inhalt
o Grundlagen zur Modellierung von MKS (Kontinuumsmechanik, Balken, Finite-Elemente-Systeme);
o Formalismen zur Angabe der Bewegungsgleichungen und Datenstrukturen zur Beschreibung flexibler MKS;
o mit Computer Algebra Systemen nachvollziehbare Beispiele.

Die Zielgruppen
o Studierende der Ingenieurwissenschaften an Fachhochschulen, Gesamthochschulen und Universitäten;
o berufstätige Ingenieure, insbesonder

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen Angebot ansehen

Versand: EUR 8,00
Von Deutschland nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Weitere beliebte Ausgaben desselben Titels

9783322939760: Dynamik flexibler Mehrkörpersysteme: Methoden der Mechanik zum rechnergestützten Entwurf und zur Analyse mechatronischer Systeme (Grundlagen Und Fortschritte Der Ingenieurwissenschaften)

Vorgestellte Ausgabe

ISBN 10:  3322939766 ISBN 13:  9783322939760
Verlag: Vieweg+Teubner Verlag, 2014
Softcover

Beste Suchergebnisse beim ZVAB

1.

Richard Schwertassek; Oskar Wallrapp
Verlag: Vieweg+Teubner Verlag (1999)
ISBN 10: 3528066296 ISBN 13: 9783528066291
Gebraucht Hardcover Anzahl: 1
Anbieter
medimops
(Berlin, Deutschland)
Bewertung
[?]

Buchbeschreibung Vieweg+Teubner Verlag, 1999. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Artikel-Nr. M03528066296-G

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Gebraucht kaufen
EUR 40,70
Währung umrechnen

In den Warenkorb

Versand: EUR 8,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer