During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". Iwanted to develop the theory of "Elliptic Genera" and to leam it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thom cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chem class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps o giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". Iwanted to develop the theory of "Elliptic Genera" and to leam it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thom cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chem class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps o giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.
"A publication of the Max-Planck-Institut f'ur Mathematik, Bonn."
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,48 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. S0-9783528064143
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - During the winter term 1987/88 I gave a course at the University of Bonn under the title 'Manifolds and Modular Forms'. Iwanted to develop the theory of 'Elliptic Genera' and to leam it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word 'genus' is meant in the sense of my book 'Neue Topologische Methoden in der Algebraischen Geometrie' published in 1956: A genus is a homomorphism of the Thom cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chem class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps o giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold. Artikel-Nr. 9783528064143
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Manifolds and Modular Forms | Friedrich Hirzebruch | Taschenbuch | xi | Deutsch | 1992 | Vieweg & Teubner | EAN 9783528064143 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105547379
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -During the winter term 1987/88 I gave a course at the University of Bonn under the title 'Manifolds and Modular Forms'. Iwanted to develop the theory of 'Elliptic Genera' and to leam it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word 'genus' is meant in the sense of my book 'Neue Topologische Methoden in der Algebraischen Geometrie' published in 1956: A genus is a homomorphism of the Thom cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chem class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps o giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 228 pp. Deutsch. Artikel-Nr. 9783528064143
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783528064143_new
Anzahl: Mehr als 20 verfügbar