Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische
Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten
untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem
Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien,
Standardbasen für konvergente Potenzreihenringe, Approximationssätze,
Grauerts Satz über die Existenz der versellen Deformation.
Das Buch richtet sich an Studenten höherer Semester, Doktoranden und
Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an
den Universitäten in Kaiserslautern und Saarbrücken entstanden.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Die Autoren, Hochschuldozent Dr. Theo de Jong und Prof. Dr. Gerhard Pfister, lehren an den Universitäten Saarbrücken bzw. Kaiserslautern im Fachgebiet Mathematik.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Wonder Book, Frederick, MD, USA
Zustand: Very Good. Very Good condition. A copy that may have a few cosmetic defects. May also contain light spine creasing or a few markings such as an owner's name, short gifter's inscription or light stamp. Artikel-Nr. J06B-04225
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 382 Seiten, mit Abbildungen, Englisch 658g. Artikel-Nr. 360719
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). As one often reads in prefaces of int- ductory books on algebraic geometry, it is not so easy to develop the basics of algebraic geometry without a proper knowledge of commutative algebra. On the other hand, the commutative algebra one needs is quite difficult to understand without the geometric motivation from which it has often developed. Local analytic geometry is concerned with germs of zero sets of analytic functions, that is, the study of such sets in the neighborhood of a point. It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. It would, therefore, appear to be a sensible idea to develop the two theories simultaneously. This, in fact, is not what we will do in this book, as the 'commutative algebra' one needs in local analytic geometry is somewhat more difficult: one has to cope with convergence questions. The most prominent and important example is the substitution of division with remainder. Its substitution in local analytic geometry is called the Weierstraft Division Theorem. The above remarks motivated us to organize the first four chapters of this book as follows. In Chapter 1 we discuss the algebra we need. Here, we assume the reader attended courses on linear algebra and abstract algebra, including some Galois theory. Artikel-Nr. 9783528031374
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2000. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9783528031374
Anzahl: 15 verfügbar