There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a ’stability theory of motion’ applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the ’follower forces’, non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called ’kinetic’ methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 2nd edition. 368 pages. German language. 8.50x5.51x0.87 inches. In Stock. Artikel-Nr. x-3519021056
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 372 pp. Deutsch. Artikel-Nr. 9783519021056
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3. Artikel-Nr. 9783519021056
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Stability Theory | An Introduction to the Stability of Dynamic Systems and Rigid Bodies | Horst Leipholz | Taschenbuch | ix | Deutsch | 1987 | Vieweg & Teubner | EAN 9783519021056 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 104993544
Anzahl: 5 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Sprache: Deutsch | Produktart: Bücher. Artikel-Nr. 23163185/203
Anzahl: 1 verfügbar