Verwandte Artikel zu An Improved Multi-Objective Evolutionary with Adaptable...

An Improved Multi-Objective Evolutionary with Adaptable Parameters - Softcover

 
9783330650558: An Improved Multi-Objective Evolutionary with Adaptable Parameters

Inhaltsangabe

Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.

Biografía del autor

Dr. Tran earned his Ph.D. in Computer and Information Sciences from Nova Southeastern University in Florida, M.S. degree in Computer Science from California State University at Fullerton, and B.S. degree in Information and Computer Science from University of California at Irvine. Currently, he is an adjunct faculty and software consultant.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für An Improved Multi-Objective Evolutionary with Adaptable...

Foto des Verkäufers

Khoa Tran
Verlag: Scholars' Press Feb 2017, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 268 pp. Englisch. Artikel-Nr. 9783330650558

Verkäufer kontaktieren

Neu kaufen

EUR 94,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tran, Khoa
Verlag: Scholars' Press, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 268 pages. 8.66x5.91x0.61 inches. In Stock. Artikel-Nr. 3330650559

Verkäufer kontaktieren

Neu kaufen

EUR 137,85
Währung umrechnen
Versand: EUR 11,58
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb