Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Multispectral analysis employed for palm related authentication uses light illumination in visible range (Red, Green, Blue) and Near Infrared (NIR) for capturing images, it combines the different information from different sources to enhances the performance of the system using a phenomenon termed as Biometric fusion. For this work, Multispectral Palmprint recognition was investigated using Principal Component Analysis (PCA) for images under different illuminations. Biometric fusion at image level was proposed where images captured under different illuminations were concatenated as triple (R,B,NIR and G,B,NIR) and a combination of four illuminations(R,G,B,NIR) accompanied by extraction of feature vectors from PCA space with incorporation of the K-Nearest Neighbour (K-NN) in the classification process. Experiments for the proposed approach were carried out on the PolyU Multispectral Database. The findings suggest that the concatenation demonstrated a good performance.The analysis should help guide one in the newly ongoing research field of Multispectral Imaging or anyone who may be considering designing a reliable and accurate Multispectral Palmprint Recognition system.Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch. Artikel-Nr. 9783330089976
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 60 pages. 8.66x5.91x0.14 inches. In Stock. Artikel-Nr. 3330089970
Anzahl: 1 verfügbar