Verwandte Artikel zu Neural Networks and Deep Learning: A Textbook

Neural Networks and Deep Learning: A Textbook - Hardcover

 
9783319944623: Neural Networks and Deep Learning: A Textbook

Inhaltsangabe

<P>THIS BOOK COVERS BOTH CLASSICAL AND MODERN MODELS IN DEEP LEARNING. THE PRIMARY FOCUS IS ON THE THEORY AND ALGORITHMS OF DEEP LEARNING. THE THEORY AND ALGORITHMS OF NEURAL NETWORKS ARE PARTICULARLY IMPORTANT FOR UNDERSTANDING IMPORTANT CONCEPTS, SO THAT ONE CAN UNDERSTAND THE IMPORTANT DESIGN CONCEPTS OF NEURAL ARCHITECTURES IN DIFFERENT APPLICATIONS. WHY DO NEURAL NETWORKS WORK? WHEN DO THEY WORK BETTER THAN OFF-THE-SHELF MACHINE-LEARNING MODELS? WHEN IS DEPTH USEFUL? WHY IS TRAINING NEURAL NETWORKS SO HARD? WHAT ARE THE PITFALLS? THE BOOK&NBSP; IS ALSO RICH IN DISCUSSING DIFFERENT APPLICATIONS IN ORDER TO GIVE THE PRACTITIONER A FLAVOR OF HOW NEURAL ARCHITECTURES ARE DESIGNED FOR DIFFERENT TYPES OF PROBLEMS. APPLICATIONS ASSOCIATED WITH MANY DIFFERENT AREAS LIKE RECOMMENDER SYSTEMS, MACHINE TRANSLATION, IMAGE CAPTIONING, IMAGE CLASSIFICATION, REINFORCEMENT-LEARNING BASED GAMING, AND TEXT ANALYTICS ARE COVERED.&NBSP;THE CHAPTERS OF THIS BOOK SPAN THREE CATEGORIES:</P> <P><B>THE BASICS OF NEURAL NETWORKS: </B>&NBSP;MANY TRADITIONAL MACHINE LEARNING MODELS CAN BE UNDERSTOOD AS SPECIAL CASES OF NEURAL NETWORKS.&NBSP; AN EMPHASIS IS PLACED IN THE FIRST TWO CHAPTERS ON UNDERSTANDING THE RELATIONSHIP BETWEEN TRADITIONAL MACHINE LEARNING AND NEURAL NETWORKS. SUPPORT VECTOR MACHINES, LINEAR/LOGISTIC REGRESSION, SINGULAR VALUE DECOMPOSITION, MATRIX FACTORIZATION, AND RECOMMENDER SYSTEMS ARE SHOWN TO BE SPECIAL CASES OF NEURAL NETWORKS. THESE METHODS ARE STUDIED TOGETHER WITH RECENT FEATURE ENGINEERING METHODS LIKE WORD2VEC.</P><P></P> <P><B>FUNDAMENTALS OF NEURAL NETWORKS:</B> A DETAILED DISCUSSION OF TRAINING AND REGULARIZATION IS PROVIDED IN CHAPTERS 3 AND 4. CHAPTERS 5 AND 6 PRESENT RADIAL-BASIS FUNCTION (RBF) NETWORKS AND RESTRICTED BOLTZMANN MACHINES.</P> <P><B>ADVANCED TOPICS IN NEURAL NETWORKS: </B>CHAPTERS 7 AND 8 DISCUSS RECURRENT NEURAL NETWORK

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

“The book recommends itself as a stepping-stone of the research-intensive area of deep learning and a worthy continuation of the previous textbooks written by the author ... . Thanks to its systematic and thorough approach complemented with the variety of resources (bibliographic and software references, exercises) neatly presented after each chapter, it is suitable for audiences of varied expertise or background.” (Irina Ioana Mohorianu, zbMATH 1402.68001, 2019)

Reseña del editor

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book  is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:

The basics of neural networks:  Many traditional machine learning models can be understood as special cases of neural networks.  An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.

Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.

Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.

The book is written for graduate students, researchers, and practitioners.   Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2018
  • ISBN 10 3319944622
  • ISBN 13 9783319944623
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten524

Gebraucht kaufen

Zustand: Gut
The book has been read, but is...
Diesen Artikel anzeigen

EUR 6,58 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Neural Networks and Deep Learning: A Textbook

Beispielbild für diese ISBN

Aggarwal, Charu C.
Verlag: Springer, 2018
ISBN 10: 3319944622 ISBN 13: 9783319944623
Gebraucht Paperback

Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Artikel-Nr. GOR009674415

Verkäufer kontaktieren

Gebraucht kaufen

EUR 14,88
Währung umrechnen
Versand: EUR 6,58
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aggarwal, Charu C.
ISBN 10: 3319944622 ISBN 13: 9783319944623
Gebraucht Hardcover

Anbieter: Better World Books, Mishawaka, IN, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 18893839-6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 23,04
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aggarwal, Charu C.
Verlag: Springer, 2018
ISBN 10: 3319944622 ISBN 13: 9783319944623
Gebraucht Hardcover

Anbieter: medimops, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Artikel-Nr. M03319944622-V

Verkäufer kontaktieren

Gebraucht kaufen

EUR 45,01
Währung umrechnen
Versand: EUR 9,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Aggarwal Charu, C.:
Verlag: Springer, 2018
ISBN 10: 3319944622 ISBN 13: 9783319944623
Gebraucht Hardcover

Anbieter: Studibuch, Stuttgart, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Sehr gut. 520 Seiten; 9783319944623.2 Gewicht in Gramm: 2. Artikel-Nr. 887468

Verkäufer kontaktieren

Gebraucht kaufen

EUR 47,79
Währung umrechnen
Versand: EUR 61,50
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb