THIS BOOK PROVIDES A COMPREHENSIVE, MODERN INTRODUCTION TO CONVEX OPTIMIZATION, A FIELD THAT IS BECOMING INCREASINGLY IMPORTANT IN APPLIED MATHEMATICS, ECONOMICS AND FINANCE, ENGINEERING, AND COMPUTER SCIENCE, NOTABLY IN DATA SCIENCE AND MACHINE LEARNING.<P></P> <P>WRITTEN BY A LEADING EXPERT IN THE FIELD, THIS BOOK INCLUDES RECENT ADVANCES IN THE ALGORITHMIC THEORY OF CONVEX OPTIMIZATION, NATURALLY COMPLEMENTING THE EXISTING LITERATURE. IT CONTAINS A UNIFIED AND RIGOROUS PRESENTATION OF THE ACCELERATION TECHNIQUES FOR MINIMIZATION SCHEMES OF FIRST- AND SECOND-ORDER. IT PROVIDES READERS WITH A FULL TREATMENT OF THE SMOOTHING TECHNIQUE, WHICH HAS TREMENDOUSLY EXTENDED THE ABILITIES OF GRADIENT-TYPE METHODS. SEVERAL POWERFUL APPROACHES IN STRUCTURAL OPTIMIZATION, INCLUDING OPTIMIZATION IN RELATIVE SCALE AND POLYNOMIAL-TIME INTERIOR-POINT METHODS, ARE ALSO DISCUSSED IN DETAIL.</P> RESEARCHERS IN THEORETICAL OPTIMIZATION AS WELL AS PROFESSIONALS WORKING ON OPTIMIZATION PROBLEMS WILL FIND THIS BOOK VERY USEFUL. IT PRESENTS MANY SUCCESSFUL EXAMPLES OF HOW TO DEVELOP VERY FAST SPECIALIZED MINIMIZATION ALGORITHMS. BASED ON THE AUTHOR’S LECTURES, IT CAN NATURALLY SERVE AS THE BASIS FOR INTRODUCTORY AND ADVANCED COURSES IN CONVEX OPTIMIZATION FOR STUDENTS IN ENGINEERING, ECONOMICS, COMPUTER SCIENCE AND MATHEMATICS.<P></P>
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning.
Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail.
Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.Yurii Nesterov is a well-known specialist in optimization. He is an author of pioneering works related to fast gradient methods, polynomial-time interior-point methods, smoothing technique, regularized Newton methods, and others. He is a winner of several prestigious international prizes, including George Danzig prize (2000), von Neumann Theory prize (2009), SIAM Outstanding Paper Award (20014), and Euro Gold Medal (2016).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,92 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. S0-9783319915777
Anzahl: 5 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783319915777_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning.Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail.Researchers in theoretical optimization as well as professionals working on optimization problems will findthis book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author's lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics. Artikel-Nr. 9783319915777
Anzahl: 1 verfügbar