Verwandte Artikel zu Taxonomy Matching Using Background Knowledge: Linked...

Taxonomy Matching Using Background Knowledge: Linked Data, Semantic Web and Heterogeneous Repositories - Softcover

 
9783319891576: Taxonomy Matching Using Background Knowledge: Linked Data, Semantic Web and Heterogeneous Repositories

Inhaltsangabe

This important text/reference presents a comprehensive review of techniques for taxonomy matching, discussing matching algorithms, analyzing matching systems, and comparing matching evaluation approaches. Different methods are investigated in accordance with the criteria of the Ontology Alignment Evaluation Initiative (OAEI). The text also highlights promising developments and innovative guidelines, to further motivate researchers and practitioners in the field.

Topics and features: discusses the fundamentals and the latest developments in taxonomy matching, including the related fields of ontology matching and schema matching; reviews next-generation matching strategies, matching algorithms, matching systems, and OAEI campaigns, as well as alternative evaluations; examines how the latest techniques make use of different sources of background knowledge to enable precise matching between repositories; describes the theoretical background, state-of-the-art research, and practical real-world applications; covers the fields of dynamic taxonomies, personalized directories, catalog segmentation, and recommender systems.

This stimulating book is an essential reference for practitioners engaged in data science and business intelligence, and for researchers specializing in taxonomy matching and semantic similarity assessment. The work is also suitable as a supplementary text for advanced undergraduate and postgraduate courses on information and metadata management.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Dr. Heiko Angermann is an e-commerce, enterprise content management, and omni/multi-channel consultant, and the Head of Project Management at an e-commerce consulting house located in Nuremberg, Germany.

Prof. Naeem Ramzan is a full Professor of Computing Engineering in the School of Engineering and Computing at the University of West of Scotland, Paisley, UK. His other publications include the successful Springer title Social Media Retrieval.

Von der hinteren Coverseite

This important text/reference presents a comprehensive review of techniques for taxonomy matching, discussing matching algorithms, analyzing matching systems, and comparing matching evaluation approaches. Different methods are investigated in accordance with the criteria of the Ontology Alignment Evaluation Initiative (OAEI). The text also highlights promising developments and innovative guidelines, to further motivate researchers and practitioners in the field.

Topics and features:

  • Discusses the fundamentals and the latest developments in taxonomy matching, including the related fields of ontology matching and schema matching
  • Reviews next-generation matching strategies, matching algorithms, matching systems, and OAEI campaigns, as well as alternative evaluations
  • Examines how the latest techniques make use of different sources of background knowledge to enable precise matching between repositories
  • Describes the theoretical background, state-of-the-art research, and practical real-world applications
  • Covers the fields of dynamic taxonomies, personalized directories, catalog segmentation, and recommender systems

This stimulating book is an essential reference for practitioners engaged in data science and business intelligence, and for researchers specializing in taxonomy matching and semantic similarity assessment. The work is also suitable as a supplementary text for advanced undergraduate and postgraduate courses on information and metadata management.

?Dr. Heiko Angermann is an e-commerce, enterprise content management, and omni/multi-channel consultant, and the Head of Project Management at an e-commerce consulting house located in Nuremberg, Germany. Prof. Naeem Ramzan is a full Professor of Computing Engineering in the School of Engineering and Computing at the University of West of Scotland, Paisley, UK. His other publications include the successful Springer title Social Media Retrieval.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2019
  • ISBN 10 331989157X
  • ISBN 13 9783319891576
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten120
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319722085: Taxonomy Matching Using Background Knowledge: Linked Data, Semantic Web and Heterogeneous Repositories

Vorgestellte Ausgabe

ISBN 10:  3319722085 ISBN 13:  9783319722085
Verlag: Springer, 2018
Hardcover

Suchergebnisse für Taxonomy Matching Using Background Knowledge: Linked...

Foto des Verkäufers

Naeem Ramzan
ISBN 10: 331989157X ISBN 13: 9783319891576
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This important text/reference presents a comprehensive review of techniques for taxonomy matching, discussing matching algorithms, analyzing matching systems, and comparing matching evaluation approaches. Different methods are investigated in accordance with the criteria of the Ontology Alignment Evaluation Initiative (OAEI). The text also highlights promising developments and innovative guidelines, to further motivate researchers and practitioners in the field.Topics and features: discusses the fundamentals and the latest developments in taxonomy matching, including the related fields of ontology matching and schema matching; reviews next-generation matching strategies, matching algorithms, matching systems, and OAEI campaigns, as well as alternative evaluations; examines how the latest techniques make use of different sources of background knowledge to enable precise matching between repositories; describes the theoretical background, state-of-the-art research, and practical real-world applications; covers the fields of dynamic taxonomies, personalized directories, catalog segmentation, and recommender systems.This stimulating book is an essential reference for practitioners engaged in data science and business intelligence, and for researchers specializing in taxonomy matching and semantic similarity assessment. The work is also suitable as a supplementary text for advanced undergraduate and postgraduate courses on information and metadata management. Artikel-Nr. 9783319891576

Verkäufer kontaktieren

Neu kaufen

EUR 37,44
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Angermann, Heiko; Ramzan, Naeem
Verlag: Springer, 2019
ISBN 10: 331989157X ISBN 13: 9783319891576
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319891576_new

Verkäufer kontaktieren

Neu kaufen

EUR 39,10
Währung umrechnen
Versand: EUR 5,94
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Angermann, Heiko/ Ramzan, Naeem
ISBN 10: 331989157X ISBN 13: 9783319891576
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. reprint edition. 120 pages. 9.25x6.10x0.28 inches. In Stock. Artikel-Nr. x-331989157X

Verkäufer kontaktieren

Neu kaufen

EUR 57,12
Währung umrechnen
Versand: EUR 11,92
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb