This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization.
The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization.
End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Charles Audet is a Professor of Mathematics at the École Polytechnique de Montréal. His research interests include the analysis and development of algorithms for blackbox nonsmooth optimization, and structured global optimization. He obtained a Ph.D. degree in applied mathematics from the École Polytechnique de Montréal, and worked as a post-doc at Rice University in Houston, Texas.
Dr. Warren Hare received his Ph.D. in Mathematical Optimization from Simon Fraser University. He complete postdoctoral research at IMPA (Brazil) and McMaster (Canada), before joining the University of British Columbia (Canada).
This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization.
The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization.
End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,44 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 302. Artikel-Nr. 370160360
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 458628940
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization.The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization.End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 320 pp. Englisch. Artikel-Nr. 9783319886800
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization.The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix. Artikel-Nr. 9783319886800
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 302 pages. 9.25x6.10x0.73 inches. In Stock. Artikel-Nr. 3319886800
Anzahl: 1 verfügbar