Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and
beam loss are discussed.The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and
beam loss are discussed.The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and ¿ where available ¿ with experiments.It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis ¿ from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation andbeam loss are discussed.The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. Artikel-Nr. 9783319872445
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and - where available - with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis - from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation andbeam loss are discussed. The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling. Artikel-Nr. 9783319872445
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 164 pages. 9.25x6.10x0.37 inches. In Stock. Artikel-Nr. 3319872443
Anzahl: 1 verfügbar