Verwandte Artikel zu Optimization Techniques in Computer Vision: Ill-Posed...

Optimization Techniques in Computer Vision: Ill-Posed Problems and Regularization (Advances in Computer Vision and Pattern Recognition) - Softcover

 
9783319835013: Optimization Techniques in Computer Vision: Ill-Posed Problems and Regularization (Advances in Computer Vision and Pattern Recognition)

Críticas

“The presentation of the problems is accompanied by illustrating examples. The book contains both a great theoretical background and practical applications and is thus self-contained. It is useful for master and doctoral students, as well as for researchers and practitioners dealing with computer vision and image processing, but also working in mathematical optimization.” (Ruxandra Stoean, zbMATH 1362.68003, 2017)

Reseña del editor

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc.
Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2018
  • ISBN 10 3319835017
  • ISBN 13 9783319835013
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten312

EUR 14,25 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319463636: Optimization Techniques in Computer Vision: Ill-Posed Problems and Regularization (Advances in Computer Vision and Pattern Recognition)

Vorgestellte Ausgabe

ISBN 10:  3319463632 ISBN 13:  9783319463636
Verlag: Springer, 2016
Hardcover

Suchergebnisse für Optimization Techniques in Computer Vision: Ill-Posed...

Beispielbild für diese ISBN

Abidi, Mongi A.; Gribok, Andrei V.; Paik, Joonki
Verlag: Springer, 2018
ISBN 10: 3319835017 ISBN 13: 9783319835013
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319835013_new

Verkäufer kontaktieren

Neu kaufen

EUR 106,83
Währung umrechnen
Versand: EUR 14,25
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mongi A. Abidi
ISBN 10: 3319835017 ISBN 13: 9783319835013
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems.The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc.Optimization plays a major role in a wide variety of theories for image processing and computer vision.Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision. Artikel-Nr. 9783319835013

Verkäufer kontaktieren

Neu kaufen

EUR 96,29
Währung umrechnen
Versand: EUR 30,37
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb