Verwandte Artikel zu Exploiting Linked Data and Knowledge Graphs in Large...

Exploiting Linked Data and Knowledge Graphs in Large Organisations - Softcover

 
9783319833392: Exploiting Linked Data and Knowledge Graphs in Large Organisations

Inhaltsangabe

This book addresses the topic of exploiting enterprise-linked data with a particular focus on knowledge construction and accessibility within enterprises. It identifies the gaps between the requirements of enterprise knowledge consumption and "standard" data consuming technologies by analysing real-world use cases, and proposes the enterprise knowledge graph to fill such gaps.

It provides concrete guidelines for effectively deploying linked-data graphs within and across business organizations. It is divided into three parts, focusing on the key technologies for constructing, understanding and employing knowledge graphs. Part 1 introduces basic background information and technologies, and presents a simple architecture to elucidate the main phases and tasks required during the lifecycle of knowledge graphs. Part 2 focuses on technical aspects; it starts with state-of-the art knowledge-graph construction approaches, and then discusses exploration and exploitation techniques as well as advanced question-answering topics concerning knowledge graphs.  Lastly, Part 3 demonstrates examples of successful knowledge graph applications in the media industry, healthcare and cultural heritage, and offers conclusions and future visions.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

About the Editors:

Jeff Z. Pan is a Reader (Professor) at University of Aberdeen. He is the Chief Scientist of the EC Marie Curie K-Drive project and has edited many books/proceedings on Semantic Technologies and Linked Data. He is well known for his work on knowledge construction, reasoning and exploitation. 

Guido Vetere leads the IBM Center for Advanced Studies Italy. He has led/worked in many research and development projects in KR, NLP and ontology. He also leads Senso Comune (www.sensocomune.it), a collaborative initiative for building an open KB of the Italian language.

Jose Manuel Gomez-Perez is the Director R&D at Expert System Iberia (ESI). His expertise is on supporting users in creating, sharing, and accessing knowledge. He has a long experience in European R&D projects, privately-funded technology transfer activities and R&D projects.

Honghan Wu is a data scientist in NIHR Maudsley Biomedical Research Centre at King's College London. His current research focus is on annotating, analysing and searching large scale healthcare data by utilising Knowledge Graph techniques.

Von der hinteren Coverseite

This book addresses the topic of exploiting enterprise-linked data with a particular

focus on knowledge construction and accessibility within enterprises. It identifies the gaps between the requirements of enterprise knowledge consumption and “standard”

data consuming technologies by analysing real-world use cases, and proposes the

enterprise knowledge graph to fill such gaps.

It provides concrete guidelines for effectively deploying linked-data graphs within

and across business organizations. It is divided into three parts, focusing on the key

technologies for constructing, understanding and employing knowledge graphs.

Part 1 introduces basic background information and technologies, and presents a

simple architecture to elucidate the main phases and tasks required during the  lifecycle of knowledge graphs. Part 2 focuses on technical aspects; it starts with state-of-the art knowledge-graph construction approaches,and then discusses exploration and exploitation techniques as well as advanced question-answering topics concerning knowledge graphs. Lastly, Part 3 demonstrates examples of successful knowledge graph applications in the media industry, healthcare and cultural heritage, and offers conclusions and future visions.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319456522: Exploiting Linked Data and Knowledge Graphs in Large Organisations

Vorgestellte Ausgabe

ISBN 10:  3319456520 ISBN 13:  9783319456522
Verlag: Springer, 2017
Hardcover

Suchergebnisse für Exploiting Linked Data and Knowledge Graphs in Large...

Foto des Verkäufers

Jeff Z. Pan
ISBN 10: 3319833391 ISBN 13: 9783319833392
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses the topic of exploiting enterprise-linked data with a particular focus on knowledge construction and accessibility within enterprises. It identifies the gaps between the requirements of enterprise knowledge consumption and 'standard' data consuming technologies by analysing real-world use cases, and proposes the enterprise knowledge graph to fill such gaps.It provides concrete guidelines for effectively deploying linked-data graphs within and across business organizations. It is divided into three parts, focusing on the key technologies for constructing, understanding and employing knowledge graphs. Part 1 introduces basic background information and technologies, and presents a simple architecture to elucidate the main phases and tasks required during the lifecycle of knowledge graphs. Part 2 focuses on technical aspects; it starts with state-of-the art knowledge-graph construction approaches, and then discusses exploration and exploitation techniques as well as advanced question-answering topics concerning knowledge graphs. Lastly, Part 3 demonstrates examples of successful knowledge graph applications in the media industry, healthcare and cultural heritage, and offers conclusions and future visions. Artikel-Nr. 9783319833392

Verkäufer kontaktieren

Neu kaufen

EUR 181,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2018
ISBN 10: 3319833391 ISBN 13: 9783319833392
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319833392_new

Verkäufer kontaktieren

Neu kaufen

EUR 183,70
Währung umrechnen
Versand: EUR 5,94
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb