Verwandte Artikel zu Positive Operator Semigroups: From Finite to Infinite...

Positive Operator Semigroups: From Finite to Infinite Dimensions: 257 (Operator Theory: Advances and Applications) - Softcover

 
9783319826707: Positive Operator Semigroups: From Finite to Infinite Dimensions: 257 (Operator Theory: Advances and Applications)

Inhaltsangabe

This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. 


In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. 

The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. 

The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

András Bátkai was born in Budapest, Hungary, in 1972, received his PhD in 2000 in Tübingen and is currently associate professor of mathematics at the Eötvös Loránd University Budapest. He is mainly interested in the theory and applications of operator semigroup theory, in paricular in applications to delay equations.He is the author of a research monograph and over 25 research papers, and the editor of the Open Mathematics journal. He was a fellow of the Alexander-von Humboldt Stiftung, held several Marie-Curie postdoctoral fellowships and and the Alexits prize of the Hungarian Academy of Sciences.

Marjeta Kramar Fijavž was born in 1973 in Ljubljana, Slovenia. She received her PhD in Mathematics in 2004 at University of Ljubljana and has been associate professor of mathematics there since 2013. Her primary interest is in linear algebra and operator theory, in particular operator semigroups, evolution equations, and dynamical networks.

Abdelaziz Rhandi was born in Casablanca, Morocco, in 1964. He received the  first Ph.D degree from the University of Besançon (France) and the second Ph.D degree from the University of Tübingen (Germany). Presently, he is full professor of analysis at the University of Salerno (Italy). His main interest is in applied functional analysis and partial differential equations. He is the author of more than 50 publications, and the editor of the journals Semigroup Forum and Positivity. He was the winner of the 2006 HP Technology for Teaching Higher Education and a fellow of the Alexander-von Humboldt Stiftung.


Von der hinteren Coverseite

This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. 


In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. 

The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. 

The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,73 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319428116: Positive Operator Semigroups: From Finite to Infinite Dimensions: 257 (Operator Theory: Advances and Applications)

Vorgestellte Ausgabe

ISBN 10:  331942811X ISBN 13:  9783319428116
Verlag: Birkhäuser, 2017
Hardcover

Suchergebnisse für Positive Operator Semigroups: From Finite to Infinite...

Beispielbild für diese ISBN

Bátkai, András; Kramar Fijav?, Marjeta; Rhandi, Abdelaziz
Verlag: Birkhäuser, 2018
ISBN 10: 3319826700 ISBN 13: 9783319826707
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319826707_new

Verkäufer kontaktieren

Neu kaufen

EUR 28,58
Währung umrechnen
Versand: EUR 5,73
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Bátkai, András; Kramar Fijav?, Marjeta; Rhandi, Abdelaziz
ISBN 10: 3319826700 ISBN 13: 9783319826707
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 369572426

Verkäufer kontaktieren

Neu kaufen

EUR 42,71
Währung umrechnen
Versand: EUR 10,18
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

András Bátkai
ISBN 10: 3319826700 ISBN 13: 9783319826707
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 384 pp. Englisch. Artikel-Nr. 9783319826707

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

András Bátkai
ISBN 10: 3319826700 ISBN 13: 9783319826707
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This bookgives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes.In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed.The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader.The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus. Artikel-Nr. 9783319826707

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb