Verwandte Artikel zu Foliation Theory in Algebraic Geometry (Simons Symposia)

Foliation Theory in Algebraic Geometry (Simons Symposia) - Softcover

 
9783319796321: Foliation Theory in Algebraic Geometry (Simons Symposia)

Inhaltsangabe

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. 

Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions.

Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Paolo CasciniDepartment of Mathematics, Imperial College London, London SW72AZ, UKE-mail address: p.cascini@imperial.ac.uk
James McKernanDepartment of Mathematics, University of California, San Diego,9500 Gilman Drive # 0112, La Jolla, CA 92093-0112, USAE-mail address: jmckernan@math.ucsd.edu
Jorge Vitorio PereiraIMPA, Estrada Dona Casto

Von der hinteren Coverseite

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.

Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions.

Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geomet
ry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319244587: Foliation Theory in Algebraic Geometry (Simons Symposia)

Vorgestellte Ausgabe

ISBN 10:  3319244582 ISBN 13:  9783319244587
Verlag: Springer, 2016
Hardcover

Suchergebnisse für Foliation Theory in Algebraic Geometry (Simons Symposia)

Foto des Verkäufers

Paolo Cascini
ISBN 10: 3319796321 ISBN 13: 9783319796321
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Artikel-Nr. 9783319796321

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Paolo Cascini
ISBN 10: 3319796321 ISBN 13: 9783319796321
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference 'Foliation Theory in Algebraic Geometry,' hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions.Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study. Artikel-Nr. 9783319796321

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2018
ISBN 10: 3319796321 ISBN 13: 9783319796321
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319796321_new

Verkäufer kontaktieren

Neu kaufen

EUR 167,42
Währung umrechnen
Versand: EUR 5,81
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb