Verwandte Artikel zu Practical Mathematical Optimization: Basic Optimization...

Practical Mathematical Optimization: Basic Optimization Theory and Gradient-Based Algorithms: 133 (Springer Optimization and Its Applications) - Hardcover

 
9783319775852: Practical Mathematical Optimization: Basic Optimization Theory and Gradient-Based Algorithms: 133 (Springer Optimization and Its Applications)

Inhaltsangabe

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences.  Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be  able to develop systematic and scientific numerical investigative skills.

 

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jan A. Snyman currently holds the position of emeritus professor in the Department of Mechanical and Aeronautical Engineering of the University of Pretoria, having retired as full professor in 2005. He has taught physics, mathematics and engineering mechanics to science and engineering students at undergraduate and postgraduate level, and has supervised the theses of 26 Masters and 8 PhD students. His research mainly concerns the development of gradient-based trajectory optimization algorithms for solving noisy and multi-modal problems, and their application in approximation methodologies for the optimal design of engineering systems. He has authored or co-authored 89 research articles in peer-reviewed journals as well as numerous papers in international conference proceedings.

Daniel N. Wilke is a senior lecturer in the Department of Mechanical and Aeronautical Engineering of the University of Pretoria.   He teaches computer programming, mathematicalprogramming and computational mechanics to science and engineering students at undergraduate and postgraduate level. His current research focuses on the development of interactive design optimization technologies, and enabling statistical learning (artificial intelligence) application layers, for industrial processes and engineering design. He has co-authored over 50 peer-reviewed journal articles and full length conference papers.

Von der hinteren Coverseite

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences.  Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be  able to develop systematic and scientific numerical investigative skills.

 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
gr8 Original-Pappband 2nd Ed. en...
Diesen Artikel anzeigen

EUR 72,50 für den Versand von Österreich nach USA

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030084868: Practical Mathematical Optimization: Basic Optimization Theory and Gradient-Based Algorithms: 133 (Springer Optimization and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  3030084868 ISBN 13:  9783030084868
Verlag: Springer, 2019
Softcover

Suchergebnisse für Practical Mathematical Optimization: Basic Optimization...

Beispielbild für diese ISBN

SNYMAN
Verlag: Springer, 2018
ISBN 10: 3319775855 ISBN 13: 9783319775852
Neu Hardcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-16674

Verkäufer kontaktieren

Neu kaufen

EUR 74,48
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Snyman
Verlag: Springer, 2018
ISBN 10: 3319775855 ISBN 13: 9783319775852
Neu Hardcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-27185

Verkäufer kontaktieren

Neu kaufen

EUR 76,59
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Snyman
Verlag: Springer, 2018
ISBN 10: 3319775855 ISBN 13: 9783319775852
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 370344119

Verkäufer kontaktieren

Neu kaufen

EUR 73,97
Währung umrechnen
Versand: EUR 7,46
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Snyman, Jan A. / wilke, Daniel N.
Verlag: Springer, Cham, 2018
ISBN 10: 3319775855 ISBN 13: 9783319775852
Gebraucht Hardcover

Anbieter: Der Buchfreund, Wien, Österreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Original-Pappband. Zustand: Sehr gut. gr8 Original-Pappband 2nd Ed. en (Springer Optimization and Its Applications, Vol. 133) XXVI, 372 pp. Artikel-Nr. 3609430

Verkäufer kontaktieren

Gebraucht kaufen

EUR 48,00
Währung umrechnen
Versand: EUR 72,50
Von Österreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Daniel N Wilke
ISBN 10: 3319775855 ISBN 13: 9783319775852
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 400 pp. Englisch. Artikel-Nr. 9783319775852

Verkäufer kontaktieren

Neu kaufen

EUR 85,59
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Daniel N Wilke
ISBN 10: 3319775855 ISBN 13: 9783319775852
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements ofgradient-only optimization strategies to handlediscontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies andnumerical optimizationusing Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills. Artikel-Nr. 9783319775852

Verkäufer kontaktieren

Neu kaufen

EUR 85,59
Währung umrechnen
Versand: EUR 63,82
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb