Introduction.- Analytic preliminaries.- The de Branges spaces B(E) and H(A).- Three extension problems.- Spectral functions for ci problems.- Inverse spectral problems.- Generalizations.- Real and symmetric constraints.- Past and Future.- Conservative and passive systems.- Rational spectral densities.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This monograph deals primarily with the prediction of vector valued stochastic processes that are either weakly stationary, or have weakly stationary increments, from finite segments of their past. The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process. The strategy is to identify these subspaces as vector valued de Branges spaces and then to express projections in terms of the reproducing kernels of these spaces and/or in terms of a generalized Fourier transform that is obtained from the solution of an associated inverse spectral problem. Subsequently, the projection of the past onto the future and the future onto the past is interpreted in terms of the range of appropriately defined Hankel operators and their adjoints, and, in the last chapter, assorted computations are carried out for rational spectral densities. The underlying mathematics needed to tackle this class of problems is developed in careful detail, but, to ease the reading, an attempt is made to avoid excessive generality. En route a number of results that, to the best of our knowledge, were only known for p = 1 are generalized to the case p > 1.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 30,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 13,81 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
25 cm. XIV, 405 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Operator Theory: Advances and Applications. Volume 266. Sprache: Englisch. Artikel-Nr. 6477FB
Anzahl: 7 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783319702612_new
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This monograph deals primarily with the prediction of vector valued stochastic processes that are either weakly stationary, or have weakly stationary increments, from finite segments of their past. The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process. The strategy is to identify these subspaces as vector valued de Branges spaces and then to express projections in terms of the reproducing kernels of these spaces and/or in terms of a generalized Fourier transform that is obtained from the solution of an associated inverse spectral problem. Subsequently, the projection of the past onto the future and the future onto the past is interpreted in terms of the range of appropriately defined Hankel operators and their adjoints, and, in the last chapter, assorted computations are carried out for rational spectral densities. The underlying mathematics needed to tackle this class of problems is developed in careful detail, but, to ease the reading, an attempt is made to avoid excessive generality. En route a number of results that, to the best of our knowledge, were only known for p = 1 are generalized to the case p > 1.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 420 pp. Englisch. Artikel-Nr. 9783319702612
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph deals primarily with the prediction of vector valued stochastic processes that are either weakly stationary, or have weakly stationary increments, from finite segments of their past. The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process. The strategy is to identify these subspaces as vector valued de Branges spaces and then to express projections in terms of the reproducing kernels of these spaces and/or in terms of a generalized Fourier transform that is obtained from the solution of an associated inverse spectral problem. Subsequently, the projection of the past onto the future and the future onto the past is interpreted in terms of the range of appropriately defined Hankel operators and their adjoints, and, in the last chapter, assorted computations are carried out for rational spectral densities. The underlying mathematics needed to tackle this class of problems is developed in careful detail, but, to ease the reading, an attempt is made to avoid excessive generality. En route a number of results that, to the best of our knowledge, were only known for p = 1 are generalized to the case p > 1. Artikel-Nr. 9783319702612
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 405 pages. 9.25x6.25x1.00 inches. In Stock. Artikel-Nr. x-3319702610
Anzahl: 2 verfügbar