Verwandte Artikel zu Stochastic Optimal Control in Infinite Dimension: Dynamic...

Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations: 82 (Probability Theory and Stochastic Modelling) - Hardcover

 
9783319530666: Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations: 82 (Probability Theory and Stochastic Modelling)

Inhaltsangabe

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Giorgio Fabbri is a CNRS Researcher at the  Aix-Marseille School of Economics, Marseille, France. He works on optimal control of deterministic and stochastic systems, notably in infinite dimensions, with applications to economics. He has also published various papers in several economic areas, in particular in growth theory and development economics.

Fausto Gozzi is a Full Professor of Mathematics for Economics and Finance at Luiss University, Roma, Italy. His main research field is the optimal control of finite and infinite-dimensional systems and its economic and financial applications. He is the author of many papers in various subjects areas, from Mathematics, to Economics and Finance.

Andrzej Swiech is a Full Professor at the School of Mathematics, Georgia Institute of Technology, Atlanta, USA. He received Ph.D. from UCSB in 1993. His main research interests are in nonlinear PDEs and integro-PDEs, PDEs in infinite dimensional spaces, viscosity solutions, stochastic and deterministic optimal control, stochastic PDEs, differential games, mean-field games, and the calculus of variations.

*Marco Fuhrman* is a Full Professor of Probability and Mathematical Statistics at the University of Milano, Italy. His main research topics are stochastic differential equations in infinite dimensions and backward stochastic differential equations for optimal control of stochastic processes.

*Gianmario Tessitore* is a Full Professor of Probability and Mathematical Statistics at Milano-Bicocca University. He is the author of several scientific papers on control of stochastic differential equations in finite and infinite dimensions. He is, in particular, interested in the applications of backward stochastic differential equations in stochastic control.


Von der hinteren Coverseite

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2017
  • ISBN 10 3319530666
  • ISBN 13 9783319530666
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten942
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319850535: Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations: 82 (Probability Theory and Stochastic Modelling)

Vorgestellte Ausgabe

ISBN 10:  3319850539 ISBN 13:  9783319850535
Verlag: Springer-Verlag GmbH, 2018
Softcover

Suchergebnisse für Stochastic Optimal Control in Infinite Dimension: Dynamic...

Foto des Verkäufers

Giorgio Fabbri
ISBN 10: 3319530666 ISBN 13: 9783319530666
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces. Artikel-Nr. 9783319530666

Verkäufer kontaktieren

Neu kaufen

EUR 246,09
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fabbri, Giorgio; Gozzi, Fausto; ?wi?ch, Andrzej
Verlag: Springer, 2017
ISBN 10: 3319530666 ISBN 13: 9783319530666
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319530666_new

Verkäufer kontaktieren

Neu kaufen

EUR 255,26
Währung umrechnen
Versand: EUR 5,82
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fabbri, Giorgio (Author)/ Gozzi, Fausto (Author)/ Swiech, Andrzej (Author)/ Fuhrman, Marco (Contributions by)/ Tessitore, Gianmario (Contributions by)
Verlag: Springer, 2017
ISBN 10: 3319530666 ISBN 13: 9783319530666
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 1st edition. 916 pages. 6.50x9.50x2.00 inches. In Stock. Artikel-Nr. x-3319530666

Verkäufer kontaktieren

Neu kaufen

EUR 355,66
Währung umrechnen
Versand: EUR 11,69
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb