Verwandte Artikel zu Algorithmic Advances in Riemannian Geometry and Applications...

Algorithmic Advances in Riemannian Geometry and Applications: For Machine Learning, Computer Vision, Statistics, and Optimization (Advances in Computer Vision and Pattern Recognition) - Hardcover

 
9783319450254: Algorithmic Advances in Riemannian Geometry and Applications: For Machine Learning, Computer Vision, Statistics, and Optimization (Advances in Computer Vision and Pattern Recognition)

Inhaltsangabe

<P>THIS BOOK PRESENTS A SELECTION OF THE MOST RECENT ALGORITHMIC ADVANCES IN RIEMANNIAN GEOMETRY IN THE CONTEXT OF MACHINE LEARNING, STATISTICS, OPTIMIZATION, COMPUTER VISION, AND RELATED FIELDS. THE UNIFYING THEME OF THE DIFFERENT CHAPTERS IN THE BOOK IS THE EXPLOITATION OF THE GEOMETRY OF DATA USING THE MATHEMATICAL MACHINERY OF RIEMANNIAN GEOMETRY. AS DEMONSTRATED BY ALL THE CHAPTERS IN THE BOOK, WHEN THE DATA IS INTRINSICALLY NON-EUCLIDEAN, THE UTILIZATION OF THIS GEOMETRICAL INFORMATION CAN LEAD TO BETTER ALGORITHMS THAT CAN CAPTURE MORE ACCURATELY THE STRUCTURES INHERENT IN THE DATA, LEADING ULTIMATELY TO BETTER EMPIRICAL PERFORMANCE. THIS BOOK IS NOT INTENDED TO BE AN ENCYCLOPEDIC COMPILATION OF THE APPLICATIONS OF RIEMANNIAN GEOMETRY. INSTEAD, IT FOCUSES ON SEVERAL IMPORTANT RESEARCH DIRECTIONS THAT ARE CURRENTLY ACTIVELY PURSUED BY RESEARCHERS IN THE FIELD. THESE INCLUDE STATISTICAL MODELING AND ANALYSIS ON MANIFOLDS,OPTIMIZATION ON MANIFOLDS, RIEMANNIAN MANIFOLDS AND KERNEL METHODS, AND DICTIONARY LEARNING AND SPARSE CODING ON MANIFOLDS. EXAMPLES OF APPLICATIONS INCLUDE NOVEL ALGORITHMS FOR MONTE CARLO SAMPLING AND GAUSSIAN MIXTURE MODEL FITTING,  3D BRAIN IMAGE ANALYSIS,IMAGE CLASSIFICATION, ACTION RECOGNITION, AND MOTION TRACKING.<BR/></P>

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

“The book under review consists of eight chapters, each introducing techniques for solving problems on manifolds and illustrating these with examples. ... reading this book would add to my collection of tools for working with data on manifolds and expose me to new problems treatable by these tools. ... In each case an effort has been made to provide enough of the underlying theory supporting the techniques, with explicit references where the interested reader can go for further details.” (Tim Zajic, IAPR Newsletter, Vol. 39 (3), July, 2017)

Reseña del editor

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

xiv, 208 p. Hardcover. Versand...
Diesen Artikel anzeigen

EUR 30,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 30,73 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319831909: Algorithmic Advances in Riemannian Geometry and Applications: For Machine Learning, Computer Vision, Statistics, and Optimization (Advances in Computer Vision and Pattern Recognition)

Vorgestellte Ausgabe

ISBN 10:  3319831909 ISBN 13:  9783319831909
Verlag: Springer, 2018
Softcover

Suchergebnisse für Algorithmic Advances in Riemannian Geometry and Applications...

Beispielbild für diese ISBN

Minh, H. Q. et al. (Eds.):
Verlag: Cham, Springer., 2016
ISBN 10: 3319450255 ISBN 13: 9783319450254
Gebraucht Hardcover

Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

xiv, 208 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Artikel-Nr. 618LB

Verkäufer kontaktieren

Gebraucht kaufen

EUR 16,00
Währung umrechnen
Versand: EUR 30,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Vittorio Murino
ISBN 10: 3319450255 ISBN 13: 9783319450254
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking. Artikel-Nr. 9783319450254

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
Währung umrechnen
Versand: EUR 30,73
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb