Hybrid Metaheuristics: Powerful Tools for Optimization (Artificial Intelligence: Foundations, Theory, and Algorithms) - Hardcover

Buch 3 von 15: Artificial Intelligence: Foundations, Theory, and Algorithms

Blum, Christian; Raidl, Günther R.

 
9783319308821: Hybrid Metaheuristics: Powerful Tools for Optimization (Artificial Intelligence: Foundations, Theory, and Algorithms)

Inhaltsangabe

This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives.     

The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

            

Von der hinteren Coverseite

This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives.

The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9783319809076: Hybrid Metaheuristics: Powerful Tools for Optimization (Artificial Intelligence: Foundations, Theory, and Algorithms)

Vorgestellte Ausgabe

ISBN 10:  3319809075 ISBN 13:  9783319809076
Verlag: Springer, 2018
Softcover