Verwandte Artikel zu Introduction to HPC with MPI for Data Science (Undergraduate...

Introduction to HPC with MPI for Data Science (Undergraduate Topics in Computer Science) - Softcover

 
9783319219028: Introduction to HPC with MPI for Data Science (Undergraduate Topics in Computer Science)

Inhaltsangabe

This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.

Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.

In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.

In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.

Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Frank Nielsen is a Professor at École Polytechnique in France where he teaches graduate (vision/graphics) and undergraduate (Java/algorithms),and a senior researcher at Sony Computer Science Laboratories Inc. His research includes Computational information geometry for imaging and learning and he is the author of 3 textbooks and 3 edited books. He is also on the Editorial Board for the Springer Journal of Mathematical Imaging and Vision.



Von der hinteren Coverseite

This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.

Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.

In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.

In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.

Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2016
  • ISBN 10 3319219022
  • ISBN 13 9783319219028
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten316
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Befriedigend
Pages can have notes/highlighting...
Diesen Artikel anzeigen

EUR 6,37 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319219042: Introduction to HPC with MPI for Data Science

Vorgestellte Ausgabe

ISBN 10:  3319219049 ISBN 13:  9783319219042
Verlag: Springer, 2016
Softcover

Suchergebnisse für Introduction to HPC with MPI for Data Science (Undergraduate...

Beispielbild für diese ISBN

Nielsen, Frank
Verlag: Springer, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Gebraucht Paperback

Anbieter: ThriftBooks-Dallas, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.98. Artikel-Nr. G3319219022I3N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 36,40
Währung umrechnen
Versand: EUR 6,37
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Frank Nielsen
ISBN 10: 3319219022 ISBN 13: 9783319219028
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book. Artikel-Nr. 9783319219028

Verkäufer kontaktieren

Neu kaufen

EUR 42,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Frank Nielsen
ISBN 10: 3319219022 ISBN 13: 9783319219028
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This gentle introduction to High Performance Computing (HPC) for DataScience using the Message Passing Interface (MPI) standard has beendesigned as a first course for undergraduates on parallel programming ondistributed memory models, and requires only basic programming notions.Dividedinto two parts the first part covers high performance computing usingC++ with the Message Passing Interface (MPI) standard followed by asecond part providing high-performance data analytics on computerclusters.In the first part, the fundamental notions of blockingversus non-blocking point-to-point communications, global communications(like broadcast or scatter) and collaborative computations (reduce)with Amdalh and Gustafson speed-up laws are described before addressingparallel sorting and parallel linear algebra on computer clusters. Thecommon ring, torus and hypercube topologies of clusters are thenexplained and global communication procedures on these topologies arestudied. This first part closes with the MapReduce (MR) model ofcomputation well-suited to processing big data using the MPI framework.Inthe second part, the book focuses on high-performance data analytics.Flat and hierarchical clustering algorithms are introduced for dataexploration along with how to program these algorithms on computerclusters, followed by machine learning classification, and anintroduction to graph analytics. This part closes with a conciseintroduction to data core-sets that let big data problems be amenable totiny data problems.Exercises are included at the end of eachchapter in order for students to practice the concepts learned, and afinal section contains an overall exam which allows them to evaluate howwell they have assimilated the material covered in the book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 316 pp. Englisch. Artikel-Nr. 9783319219028

Verkäufer kontaktieren

Neu kaufen

EUR 42,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Nielsen, Frank
Verlag: Springer, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319219028_new

Verkäufer kontaktieren

Neu kaufen

EUR 50,20
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Nielsen, Frank
ISBN 10: 3319219022 ISBN 13: 9783319219028
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 316 pages. 9.00x6.25x0.75 inches. In Stock. Artikel-Nr. x-3319219022

Verkäufer kontaktieren

Neu kaufen

EUR 72,50
Währung umrechnen
Versand: EUR 11,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb