Verwandte Artikel zu Boosted Statistical Relational Learners: From Benchmarks...

Boosted Statistical Relational Learners: From Benchmarks to Data-Driven Medicine (SpringerBriefs in Computer Science) - Softcover

 
9783319136431: Boosted Statistical Relational Learners: From Benchmarks to Data-Driven Medicine (SpringerBriefs in Computer Science)

Inhaltsangabe

This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2015
  • ISBN 10 3319136437
  • ISBN 13 9783319136431
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten84
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Boosted Statistical Relational Learners: From Benchmarks...

Foto des Verkäufers

Sriraam Natarajan
ISBN 10: 3319136437 ISBN 13: 9783319136431
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource. Artikel-Nr. 9783319136431

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Natarajan, Sriraam
Verlag: Springer, 2015
ISBN 10: 3319136437 ISBN 13: 9783319136431
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783319136431_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,80
Währung umrechnen
Versand: EUR 5,94
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sriraam Natarajan
Verlag: Springer, 2015
ISBN 10: 3319136437 ISBN 13: 9783319136431
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2014 edition. 74 pages. 9.00x6.00x0.25 inches. In Stock. Artikel-Nr. x-3319136437

Verkäufer kontaktieren

Neu kaufen

EUR 77,09
Währung umrechnen
Versand: EUR 11,92
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb