These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk.
The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk.
The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk.The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 140 pp. Englisch. Artikel-Nr. 9783319025759
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk.The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ). Artikel-Nr. 9783319025759
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783319025759_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 2013 edition. 129 pages. 9.00x6.00x0.20 inches. In Stock. Artikel-Nr. x-3319025759
Anzahl: 2 verfügbar