"Scientific Data: A 50 Steps Guide using Python" is your guide towards experimental scientific data. It aims to bridge the gap between classical natural sciences as taught in universities and the ever-growing need for technological/digital capabilities, particularly in industrial research. Topics covered include instructions for setting up a workspace, guidelines for structuring data, examples for interfacing with results files and suggestions for drawing scientific conclusions therefrom. Additionally, concepts for designing experiments and visualizing the corresponding results are highlighted next to ways of extracting meaningful characteristics and leveraging those in terms of multi-objective optimizations.
The concise problem-solution-discussion structure used throughout supported by Python code snippets emphasizes the work’s focus on practitioners. This guide will provide you with a solid understanding of how to process and understand experimental data within a natural scientific context while ensuring sustainable use of your findings and processing as seen through a programmer’s eyes.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Matthias Hofmann holds a Ph.D. in Physical Chemistry from the University of Regensburg. At Albert Invent, Matthias continues to contribute to innovative methods in natural science research and accelerating R&D through a data-driven approach.
He is the author of "Data Management for Natural Scientists - A Practical Guide to Data Extraction and Storage Using Python".
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Books From California, Simi Valley, CA, USA
perfect. Zustand: Very Good. Cover and edges may have some wear. Artikel-Nr. mon0003646161
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9783111334578
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9783111334578
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 396262153
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Matthias Hofmann holds a Ph.D. in Physical Chemistry from the University of Regensburg. At Albert Invent, Matthias continues to contribute to innovative methods in natural science research and accelerating R&D through a data-driven approach. . Artikel-Nr. 1093648371
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 260 pages. 9.44x6.69x9.61 inches. In Stock. Artikel-Nr. __3111334570
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Scientific Data: A 50 Steps Guide using Python | Matthias Josef Hofmann | Taschenbuch | De Gruyter Textbook | XVI | Englisch | 2024 | Walter de Gruyter | EAN 9783111334578 | Verantwortliche Person für die EU: Walter de Gruyter GmbH, De Gruyter GmbH, Genthiner Str. 13, 10785 Berlin, productsafety[at]degruyterbrill[dot]com | Anbieter: preigu. Artikel-Nr. 129107653
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This guide provides a solid understanding of how to understand experimental data within a natural scientific context while ensuring sustainable use of findings and processing as seen through a programmer's eye. The concise problem - solution - discussion structure used throughout supported by Python code snippets emphasizes the book's focus on practitioners.Walter de Gruyter, Genthiner Straße 13, 10785 Berlin 217 pp. Englisch. Artikel-Nr. 9783111334578
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - 'Scientific Data: A 50 Steps Guide using Python' is your guide towards experimental scientific data. It aims to bridge the gap between classical natural sciences as taught in universities and the ever-growing need for technological/digital capabilities, particularly in industrial research. Topics covered include instructions for setting up a workspace, guidelines for structuring data, examples for interfacing with results files and suggestions for drawing scientific conclusions therefrom. Additionally, concepts for designing experiments and visualizing the corresponding results are highlighted next to ways of extracting meaningful characteristics and leveraging those in terms of multi-objective optimizations. The concise problem-solution-discussion structure used throughout supported by Python code snippets emphasizes the work's focus on practitioners. This guide will provide you with a solid understanding of how to process and understand experimental data within a natural scientific context while ensuring sustainable use of your findings and processing as seen through a programmer's eyes. Artikel-Nr. 9783111334578
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | This guide provides a solid understanding of how to understand experimental data within a natural scientific context while ensuring sustainable use of findings and processing as seen through a programmer's eye. The concise problem - solution - discussion structure used throughout supported by Python code snippets emphasizes the book's focus on practitioners. Artikel-Nr. 42846577/12
Anzahl: 1 verfügbar