This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Souvik Bhattacharyya, Koushik Ghosh, University of Burdwan,West Bengal, India.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 36622616/12
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it. Artikel-Nr. 9783110697094
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 248 pages. 6.69x9.45x0.67 inches. In Stock. Artikel-Nr. x-3110697092
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Souvik Bhattacharyya, Koushik Ghosh, University of Burdwan,West Bengal, India.This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly,. Artikel-Nr. 385278278
Anzahl: Mehr als 20 verfügbar