Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged.
As well as determining the range of possible 'growth types', for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure.
A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and Strong Approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained 'windows', making the book accessible to a wide mathematical readership.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
<p>Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged.</p><p>As well as determining the range of possible "growth types", for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure. For example the so-called PSG Theorem, proved in Chapter 5, characterizes the groups of <em>polynomial subgroup growth</em> as those which are <em>virtually soluble of finite rank</em>. A key element in the proof is the growth of <em>congruence subgroups</em> in arithmetic groups, a new kind of "non-commutative arithmetic", with applications to the study of lattices in Lie groups. Another kind of non-commutative arithmetic arises with the introduction of <em>subgroup-counting zeta functions</em>; these fascinating and mysterious zeta functions have remarkable applications both to the "arithmetic of subgroup growth" and to the classification of finite p-groups.</p><p>A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and strong approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained "windows", making the book accessible to a wide mathematical readership. The book concludes with over 60 challenging open problems that will stimulate further research in this rapidly growing subject.</p>
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,74 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783034898461_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 480 pages. 9.30x6.20x1.10 inches. In Stock. Artikel-Nr. x-3034898460
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2001.Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged.As well as determining the range of possible 'growth types', for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure. A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and Strong Approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained 'windows'. Artikel-Nr. 9783034898461
Anzahl: 1 verfügbar