1 Klassifikation der einfachen Hyperftächen-Singularitäten . . . . . . . . . . . . . . 2 1. 1 Abbildungskeime, Rechtsäquivalenz, Einfachheit . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Endlich bestimmte FUnktionskeime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 1. 3 Klassifikation der einfachen Singularitäten in C •••• ••••••••••••. •. . . ••. • 11 1. 4 Beweis des verallgemeinerten Morse-Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Klassifikation der einfachen Singularitäten in C" . . . . . . . . . . . . . . . . . . . . . . . . 19 3 2 Die einfachen Flächensingularitäten in C als Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Die endlichen Untergruppen von SL(2, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2. 3 C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . 27 2. 4 Die Rationalität der Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Die Auflösung der einfachen zweidimensionalen Hyperftächensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. 1 Das Auflösen von Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 3. 2 Das Auflösen von C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Elementare lokale Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . •. . . •. . ••. • •. . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . •. . •. . . •. . •. . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . •. . •. . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . •. . . . . . •. . • . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •. . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . .
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
1 Klassifikation der einfachen Hyperftächen-Singularitäten . . . . . . . . . . . . . . 2 1. 1 Abbildungskeime, Rechtsäquivalenz, Einfachheit . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Endlich bestimmte FUnktionskeime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 1. 3 Klassifikation der einfachen Singularitäten in C ···· ············. ·. . . ··. · 11 1. 4 Beweis des verallgemeinerten Morse-Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Klassifikation der einfachen Singularitäten in C" . . . . . . . . . . . . . . . . . . . . . . . . 19 3 2 Die einfachen Flächensingularitäten in C als Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Die endlichen Untergruppen von SL(2, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2. 3 C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . 27 2. 4 Die Rationalität der Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Die Auflösung der einfachen zweidimensionalen Hyperftächensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. 1 Das Auflösen von Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 3. 2 Das Auflösen von C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Elementare lokale Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . ·. . . ·. . ··. · ·. . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . ·. . ·. . . ·. . ·. . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . ·. . ·. . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . ·. . . . . . ·. . · . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·. . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . .
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,77 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783034897198_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 146 pages. German language. 9.60x6.69x0.50 inches. In Stock. Artikel-Nr. x-3034897197
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Series: Lectures in Mathematics. Eth Zurich (Closed). Num Pages: 140 pages, black & white illustrations, bibliography. BIC Classification: PBMW; PD. Category: (G) General (US: Trade). Dimension: 244 x 170 x 8. Weight in Grams: 254. . 2012. Paperback / so. . . . . Books ship from the US and Ireland. Artikel-Nr. V9783034897198
Anzahl: 15 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . ¿. . . ¿. . ¿¿. ¿ ¿. . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . ¿. . ¿. . . ¿. . ¿. . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . ¿. . ¿. . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . ¿. . . . . . ¿. . ¿ . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ¿. . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . .Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 152 pp. Deutsch. Artikel-Nr. 9783034897198
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1 Klassifikation der einfachen Hyperftächen-Singularitäten . . . . . . . . . . . . . . 2 1. 1 Abbildungskeime, Rechtsäquivalenz, Einfachheit . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Endlich bestimmte FUnktionskeime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 1. 3 Klassifikation der einfachen Singularitäten in C . . . . . 11 1. 4 Beweis des verallgemeinerten Morse-Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Klassifikation der einfachen Singularitäten in C' . . . . . . . . . . . . . . . . . . . . . . . . 19 3 2 Die einfachen Flächensingularitäten in C als Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Die endlichen Untergruppen von SL(2, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2. 3 C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . 27 2. 4 Die Rationalität der Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Die Auflösung der einfachen zweidimensionalen Hyperftächensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. 1 Das Auflösen von Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 3. 2 Das Auflösen von C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Elementare lokale Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . . Artikel-Nr. 9783034897198
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Singularitäten | Horst Knörrer (u. a.) | Taschenbuch | vi | Deutsch | 2012 | Springer Basel | EAN 9783034897198 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105282919
Anzahl: 5 verfügbar