Verwandte Artikel zu Lectures on the Geometry of Poisson Manifolds: 118...

Lectures on the Geometry of Poisson Manifolds: 118 (Progress in Mathematics) - Softcover

 
9783034896498: Lectures on the Geometry of Poisson Manifolds: 118 (Progress in Mathematics)

Inhaltsangabe

Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L... ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in­ gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys­ tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie].

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

    "The book serves well as an introduction and an overview of the subject and a long list of references helps with further study."   
  -- Zbl. Math.   

    "The book is well done...should be an essential purchase for mathematics libraries and is likely to be a standard reference for years to come, providing an introduction to an attractive area of further research."  --   Mathematical Reviews   

    "The importance and actuality of the subject, as well as the very rigorous and didactic presentation of the content, make out of this book a valuable contribution to current mathematics. The book is intended first of all to mathematicians, but it can be interesting also for a wide circle of readers, including mechanicists and physicists."    -- Mathematica   

Reseña del editor

Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L... ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in­ gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys­ tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie].

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783764350161: Lectures on the Geometry of Poisson Manifolds: 118 (Progress in Mathematics)

Vorgestellte Ausgabe

ISBN 10:  3764350164 ISBN 13:  9783764350161
Verlag: Birkhäuser, 1994
Hardcover

Suchergebnisse für Lectures on the Geometry of Poisson Manifolds: 118...

Foto des Verkäufers

Izu Vaisman
ISBN 10: 3034896492 ISBN 13: 9783034896498
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L. ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie].Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 220 pp. Englisch. Artikel-Nr. 9783034896498

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Izu Vaisman
Verlag: Birkhäuser Basel, 2012
ISBN 10: 3034896492 ISBN 13: 9783034896498
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L. ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie]. Artikel-Nr. 9783034896498

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vaisman, Izu
Verlag: Birkhäuser, 2012
ISBN 10: 3034896492 ISBN 13: 9783034896498
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783034896498_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,37
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb