"It should be stressed that an important part of the results presented is due to the authors. . . . In the reviewer's opinion, this is an elegant and most welcome addition to the rich literature of Markov processes." --MathSciNet
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 14,25 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783034894081_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P). Artikel-Nr. 9783034894081
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 228 pages. 9.25x6.10x0.52 inches. In Stock. Artikel-Nr. x-3034894082
Anzahl: 2 verfügbar