Verwandte Artikel zu Basic Classes of Linear Operators

Basic Classes of Linear Operators - Softcover

 
9783034879811: Basic Classes of Linear Operators

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

I Hilbert Spaces.- 1.1 Complex n-Space.- 1.2 The Hilbert Space ?2.- 1.3 Definition of Hilbert Space and its Elementary Properties.- 1.4 Distance from a Point to a Finite Dimensional Space.- 1.5 The Gram Determinant.- 1.6 Incompatible Systems of Equations.- 1.7 Least Square Fit.- 1.8 Distance to a Convex Set and Projections onto Subspaces.- 1.9 Orthonormal Systems.- 1.10 Szegö Polynomials.- 1.11 Legendre Polynomials.- 1.12 Orthonormal Bases.- 1.13 Fourier Series.- 1.14 Completeness of the Legendre Polynomials.- 1.15 Bases for the Hilbert Space of Functions on a Square.- 1.16 Stability of Orthonormal Bases.- 1.17 Separable Spaces.- 1.18 Isometry of Hilbert Spaces.- 1.19 Example of a Non Separable Space.- Exercises.- II Bounded Linear Operators on Hilbert Spaces.- 2.1 Properties of Bounded Linear Operators.- 2.2 Examples of Bounded Linear Operators with Estimates of Norms.- 2.3 Continuity of a Linear Operator.- 2.4 Matrix Representations of Bounded Linear Operators.- 2.5 Bounded Linear Functionals.- 2.6 Operators of Finite Rank.- 2.7 Invertible Operators.- 2.8 Inversion of Operators by the Iterative Method.- 2.9 Infinite Systems of Linear Equations.- 2.10 Integral Equations of the Second Kind.- 2.11 Adjoint Operators.- 2.12 Self Adjoint Operators.- 2.13 Orthogonal Projections.- 2.14 Two Fundamental Theorems.- 2.15 Projections and One-Sided Invertibility of Operators.- 2.16 Compact Operators.- 2.17 The Projection Method for Inversion of Linear Operators.- 2.18 The Modified Projection Method.- 2.19 Invariant Subspaces.- 2.20 The Spectrum of an Operator.- Exercises.- III Laurent and Toeplitz Operators on Hilbert Spaces.- 3.1 Laurent Operators.- 3.2 Toeplitz Operators.- 3.3 Band Toeplitz operators.- 3.4 Toeplitz Operators with Continuous Symbols.- 3.5 Finite Section Method.- 3.6 The Finite Section Method for Laurent Operators.- Exercises.- IV Spectral Theory of Compact Self Adjoint Operators.- 4.1 Example of an Infinite Dimensional Generalization.- 4.2 The Problem of Existence of Eigenvalues and Eigenvectors.- 4.3 Eigenvalues and Eigenvectors of Operators of Finite Rank.- 4.4 Existence of Eigenvalues.- 4.5 Spectral Theorem.- 4.6 Basic Systems of Eigenvalues and Eigenvectors.- 4.7 Second Form of the Spectral Theorem.- 4.8 Formula for the Inverse Operator.- 4.9 Minimum-Maximum Properties of Eigenvalues.- Exercises.- V Spectral Theory of Integral Operators.- 5.1 Hilbert-Schmidt Theorem.- 5.2 Preliminaries for Mercer's Theorem.- 5.3 Mercer's Theorem.- 5.4 Trace Formula for Integral Operators.- Exercises.- VI Unbounded Operators on Hilbert Space.- 6.1 Closed Operators and First Examples.- 6.2 The Second Derivative as an Operator.- 6.3 The Graph Norm.- 6.4 Adjoint Operators.- 6.5 Sturm-Liouville Operators.- 6.6 Self Adjoint Operators with Compact Inverse.- Exercises.- VII Oscillations of an Elastic String.- 7.1 The Displacement Function.- 7.2 Basic Harmonic Oscillations.- 7.3 Harmonic Oscillations with an External Force.- VIII Operational Calculus with Applications.- 8.1 Functions of a Compact Self Adjoint Operator.- 8.2 Differential Equations in Hilbert Space.- 8.3 Infinite Systems of Differential Equations.- 8.4 Integro-Differential Equations.- Exercises.- IX Solving Linear Equations by Iterative Methods.- 9.1 The Main Theorem.- 9.2 Preliminaries for the Proof.- 9.3 Proof of the Main Theorem.- 9.4 Application to Integral Equations.- X Further Developments of the Spectral Theorem.- 10.1 Simultaneous Diagonalization.- 10.2 Compact Normal Operators.- 10.3 Unitary Operators.- 10.4 Singular Values.- 10.5 Trace Class and Hilbert Schmidt Operators.- Exercises.- XI Banach Spaces.- 11.1 Definitions and Examples.- 11.2 Finite Dimensional Normed Linear Spaces.- 11.3 Separable Banach Spaces and Schauder Bases.- 11.4 Conjugate Spaces.- 11.5 Hahn-Banach Theorem.- Exercises.- XII Linear Operators on a Banach Space.- 12.1 Description of Bounded Operators.- 12.2 Closed Linear Operators.- 12.3 Closed Graph Theorem.- 12.4 Applications of the Closed Grap

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9783764369309: Basic Classes of Linear Operators

Vorgestellte Ausgabe

ISBN 10:  3764369302 ISBN 13:  9783764369309
Verlag: Springer, 2013
Softcover