Die vorliegende Broschtire wendet sich an spieltheoretisch interessierte Leser, die mit den grundlegenden Begriffen der Mengenlehre und mit mathematischen SchluB weisen vertraut sind. Sie hat eine besondere Klasse strategischer Spiele mit voll standiger Information zum Gegenstand, die - spieltheoretisch nicht ganz exak- haufig als "Spiele auf Graphen" bezeichnet werden und unter denen die sogenannten Nimmspiele die bekanntesten darstellen. Mit diesem Btichlein werden zwei Ziele verfolgt. Erstens und hauptsachlich sollen verschiedene Losungsbegriffe, und zwar vor allem Gleichgewichtssituationen, fUr diese Spiele untersucht werden. Zweitens solI der Leser anhand einer speziellen Spiel klasse mit einigen Fragestellungen der Spieltheorie vertraut gemacht werden. Ab gesehen von der Losung mehrerer konkreter Spiele werden die Ergebnisse theore tischer Art sein und sich von klassischen Aussagen zum selben Gegenstand vor wiegend darin unterscheiden, daB in den Spielen Partien unendlicher Lange auf treten dtirfen und Eigenschaften der verschiedenen Losungen - tiber die Frage nach der Existenz hinaus - im Mittelpunkt stehen. An mehreren entscheidenden Stellen wird an Uberlegungen von C. BERGE [1] angekntipft, und einige neue Aspekte werden hinzugefUgt. Die hier dargelegten Resultate stammen teils aus meiner Dissertation A [1] - bei dieser Gelegenheit mochte ich Herrn Prof. Dr. N. N. VOROB’EV und Herrn Dr. K. LOMMATZSCH fUr die dabei geleistete Betreuung meinen herzlichen Dank aussprechen -, teils aus spateren Untersuchungen, ftir die auch die Arbeit von J. SKOLE [1] interessante Impulse gab.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Die vorliegende Broschtire wendet sich an spieltheoretisch interessierte Leser, die mit den grundlegenden Begriffen der Mengenlehre und mit mathematischen SchluB weisen vertraut sind. Sie hat eine besondere Klasse strategischer Spiele mit voll standiger Information zum Gegenstand, die - spieltheoretisch nicht ganz exak- haufig als "Spiele auf Graphen" bezeichnet werden und unter denen die sogenannten Nimmspiele die bekanntesten darstellen. Mit diesem Btichlein werden zwei Ziele verfolgt. Erstens und hauptsachlich sollen verschiedene Losungsbegriffe, und zwar vor allem Gleichgewichtssituationen, fUr diese Spiele untersucht werden. Zweitens solI der Leser anhand einer speziellen Spiel klasse mit einigen Fragestellungen der Spieltheorie vertraut gemacht werden. Ab gesehen von der Losung mehrerer konkreter Spiele werden die Ergebnisse theore tischer Art sein und sich von klassischen Aussagen zum selben Gegenstand vor wiegend darin unterscheiden, daB in den Spielen Partien unendlicher Lange auf treten dtirfen und Eigenschaften der verschiedenen Losungen - tiber die Frage nach der Existenz hinaus - im Mittelpunkt stehen. An mehreren entscheidenden Stellen wird an Uberlegungen von C. BERGE [1] angekntipft, und einige neue Aspekte werden hinzugefUgt. Die hier dargelegten Resultate stammen teils aus meiner Dissertation A [1] - bei dieser Gelegenheit mochte ich Herrn Prof. Dr. N. N. VOROB'EV und Herrn Dr. K. LOMMATZSCH fUr die dabei geleistete Betreuung meinen herzlichen Dank aussprechen -, teils aus spateren Untersuchungen, ftir die auch die Arbeit von J. SKOLE [1] interessante Impulse gab.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,77 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In German. Artikel-Nr. ria9783034854825_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 94 pages. German language. 9.70x6.70x0.30 inches. In Stock. Artikel-Nr. x-303485482X
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Die vorliegende Broschtire wendet sich an spieltheoretisch interessierte Leser, die mit den grundlegenden Begriffen der Mengenlehre und mit mathematischen SchluB weisen vertraut sind. Sie hat eine besondere Klasse strategischer Spiele mit voll standiger Information zum Gegenstand, die - spieltheoretisch nicht ganz exak- haufig als 'Spiele auf Graphen' bezeichnet werden und unter denen die sogenannten Nimmspiele die bekanntesten darstellen. Mit diesem Btichlein werden zwei Ziele verfolgt. Erstens und hauptsachlich sollen verschiedene Losungsbegriffe, und zwar vor allem Gleichgewichtssituationen, fUr diese Spiele untersucht werden. Zweitens solI der Leser anhand einer speziellen Spiel klasse mit einigen Fragestellungen der Spieltheorie vertraut gemacht werden. Ab gesehen von der Losung mehrerer konkreter Spiele werden die Ergebnisse theore tischer Art sein und sich von klassischen Aussagen zum selben Gegenstand vor wiegend darin unterscheiden, daB in den Spielen Partien unendlicher Lange auf treten dtirfen und Eigenschaften der verschiedenen Losungen - tiber die Frage nach der Existenz hinaus - im Mittelpunkt stehen. An mehreren entscheidenden Stellen wird an Uberlegungen von C. BERGE [1] angekntipft, und einige neue Aspekte werden hinzugefUgt. Die hier dargelegten Resultate stammen teils aus meiner Dissertation A [1] - bei dieser Gelegenheit mochte ich Herrn Prof. Dr. N. N. VOROB'EV und Herrn Dr. K. LOMMATZSCH fUr die dabei geleistete Betreuung meinen herzlichen Dank aussprechen -, teils aus spateren Untersuchungen, ftir die auch die Arbeit von J. SKOLE [1] interessante Impulse gab.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 96 pp. Deutsch. Artikel-Nr. 9783034854825
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Die vorliegende Broschtire wendet sich an spieltheoretisch interessierte Leser, die mit den grundlegenden Begriffen der Mengenlehre und mit mathematischen SchluB weisen vertraut sind. Sie hat eine besondere Klasse strategischer Spiele mit voll standiger Information zum Gegenstand, die - spieltheoretisch nicht ganz exak- haufig als 'Spiele auf Graphen' bezeichnet werden und unter denen die sogenannten Nimmspiele die bekanntesten darstellen. Mit diesem Btichlein werden zwei Ziele verfolgt. Erstens und hauptsachlich sollen verschiedene Losungsbegriffe, und zwar vor allem Gleichgewichtssituationen, fUr diese Spiele untersucht werden. Zweitens solI der Leser anhand einer speziellen Spiel klasse mit einigen Fragestellungen der Spieltheorie vertraut gemacht werden. Ab gesehen von der Losung mehrerer konkreter Spiele werden die Ergebnisse theore tischer Art sein und sich von klassischen Aussagen zum selben Gegenstand vor wiegend darin unterscheiden, daB in den Spielen Partien unendlicher Lange auf treten dtirfen und Eigenschaften der verschiedenen Losungen - tiber die Frage nach der Existenz hinaus - im Mittelpunkt stehen. An mehreren entscheidenden Stellen wird an Uberlegungen von C. BERGE [1] angekntipft, und einige neue Aspekte werden hinzugefUgt. Die hier dargelegten Resultate stammen teils aus meiner Dissertation A [1] - bei dieser Gelegenheit mochte ich Herrn Prof. Dr. N. N. VOROB'EV und Herrn Dr. K. LOMMATZSCH fUr die dabei geleistete Betreuung meinen herzlichen Dank aussprechen -, teils aus spateren Untersuchungen, ftir die auch die Arbeit von J. SKOLE [1] interessante Impulse gab. Artikel-Nr. 9783034854825
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Spiele auf Graphen | Kummer | Taschenbuch | 94 S. | Deutsch | 2014 | Springer Basel | EAN 9783034854825 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105089870
Anzahl: 5 verfügbar