Verwandte Artikel zu Stability by Linearization of Einstein's Field...

Stability by Linearization of Einstein's Field Equation - Softcover

 
9783034603096: Stability by Linearization of Einstein's Field Equation

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

Preface // I Pseudo-Riemannian Manifolds: I.1 Connections / I.2 Firsts results on pseudo-Riemannian manifolds / I.3 Laplacians / I.4 Sobolev spaces of tensors on Riemannian manifolds / I.5 Lorentzian manifolds // II Introduction to Relativity: II.1 Classical fluid mechanics / II.2 Kinematics of the special relativity / II.3 Dynamics of special relativity / II.4 General relativity / II.5 Cosmological models / II. 6 Appendix: a theorem in affine geometry // III. Approximation of Einstein's Equation by the Wave Equation: III.1 Perturbations of Ricci tensor / III.2 Einstein's equation for small perturbations of the Minkowski metric / III.3 Action on metrics of diffeomorphisms close to identity / III.4 Continuing the calculation of Section 2 / III.5 Comparison with the classical gravitation // IV. Cauchy Problem for Einstein's Equation with Matter: IV.1 1. Differential operators in an open set of Rn+1 / IV.2 Differential operators in vector bundles / IV.3 Harmonic maps / IV.4 Admissible classes of stress-energy tensors / IV.5 Differential operator associated to Einstein's equation / IV.6 Constraint equations / IV.7 Hyperbolic reduction / IV.8 Fundamental theorem / IV.9 An example: the stress-energy tensor of holonomic media / IV.10 The Cauchy problem in the vacuum // V. Stability by Linearization of Einstein's Equation, General Concepts: V.1 Classical concept of stability by linearization of Einstein's equation in the vacuum / V.2 A new concept of stability by linearization of Einstein's equation in the presence of matter / V.3 How to apply the definition of stability by linearization of Einstein's equation in the presence of matter / V.4 Change of notation / V.5 Technical details concerning the map f / V.6 Tangent linear map of f // VI. General Results on Stability by Linearization when the Submanifold M of V is Compact: IV.1 1. Adjoint of D(g,k) f / VI.2 Results by A. Fischer and J. E. Marsden / VI.3 A result by V. Moncrief / VI.4 Appendix: general results on elliptic operators in compact manifolds // VII. Stability by Linearization of Einstein's Equation at Minkowski's Initial Metric: VII.1 A further expression of D(g,k) f / VII.2 The relation between Euclidean Laplacian and stability by linearization at the initial Minkowski's metric / VII.3 Some proofs on topological isomorphisms in Rn / VII.4 Stability of the Minkowski metric: Y. Choquet-Bruhat and S. Deser's result / VII.5 The Euclidean asymptotic case: generalization of a result by Y. Choquet-Bruhat, A. Fischer and J. E. Marsden // VIII. Stability by Linearization of Einstein's Equation in Robertson-Walker Cosmological Models: VIII.1 Euclidean model / VIII.2 Hyperbolic model / VIII.3 Sobolev spaces and hyperbolic Laplacian / VIII.4 Spherical model / VIII.5 Universes that are not simply connected // References

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9783034603034: Stability by Linearization of Einstein's Field Equation: 58 (Progress in Mathematical Physics)

Vorgestellte Ausgabe

ISBN 10:  3034603037 ISBN 13:  9783034603034
Verlag: Birkhäuser, 2010
Hardcover