This book introduces the state-of-the-art understanding on domain-informed machine learning (DIML) for advanced manufacturing. Methods and case studies presented in this volume show how complicated engineering phenomena and mechanisms are integrated into machine learning problem formulation and methodology development. Ultimately, these methodologies contribute to quality control for smart personalized manufacturing. The topics include domain-informed feature representation, dimension reduction for personalized manufacturing, fabrication-aware modeling of additive manufacturing processes, small-sample machine learning for 3D printing quality, optimal compensation of 3D shape deviation in 3D printing, engineering-informed transfer learning for smart manufacturing, and domain-informed predictive modeling for nanomanufacturing quality. Demonstrating systematically how the various aspects of domain-informed machine learning methods are developed for advanced manufacturing such as additive manufacturing and nanomanufacturing, the book is ideal for researchers, professionals, and students in manufacturing and related engineering fields.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Qiang S. Huang is a Professor in the Epstein Department of Industrial and Systems Engineering at the University of Southern California, Los Angeles, CA.
This book introduces the state-of-the-art understanding on domain-informed machine learning (DIML) for advanced manufacturing. Methods and case studies presented in this volume show how complicated engineering phenomena and mechanisms are integrated into machine learning problem formulation and methodology development. Ultimately, these methodologies contribute to quality control for smart personalized manufacturing. The topics include domain-informed feature representation, dimension reduction for personalized manufacturing, fabrication-aware modeling of additive manufacturing processes, small-sample machine learning for 3D printing quality, optimal compensation of 3D shape deviation in 3D printing, engineering-informed transfer learning for smart manufacturing, and domain-informed predictive modeling for nanomanufacturing quality. Demonstrating systematically how the various aspects of domain-informed machine learning methods are developed for advanced manufacturing such as additive manufacturing and nanomanufacturing, the book is ideal for researchers, professionals, and students in manufacturing and related engineering fields.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9783031916304
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9783031916304
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 450 pages. 9.25x6.10x9.49 inches. In Stock. Artikel-Nr. __3031916301
Anzahl: 2 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9783031916304
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 2305139561
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces the state-of-the-art understanding on domain-informed machine learning (DIML) for advanced manufacturing. Methods and case studies presented in this volume show how complicated engineering phenomena and mechanisms are integrated into machine learning problem formulation and methodology development. Ultimately, these methodologies contribute to quality control for smart personalized manufacturing. The topics include domain-informed feature representation, dimension reduction for personalized manufacturing, fabrication-aware modeling of additive manufacturing processes, small-sample machine learning for 3D printing quality, optimal compensation of 3D shape deviation in 3D printing, engineering-informed transfer learning for smart manufacturing, and domain-informed predictive modeling for nanomanufacturing quality. Demonstrating systematically how the various aspects of domain-informed machine learning methods are developed for advanced manufacturing such as additive manufacturing and nanomanufacturing, the book is ideal for researchers, professionals, and students in manufacturing and related engineering fields. Artikel-Nr. 9783031916304
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Domain-informed Machine Learning for Smart Manufacturing | Qiang Huang | Buch | xvii | Englisch | 2025 | Springer Nature Switzerland | EAN 9783031916304 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 133621416
Anzahl: 1 verfügbar